亚色在线观看_亚洲人成a片高清在线观看不卡_亚洲中文无码亚洲人成频_免费在线黄片,69精品视频九九精品视频,美女大黄三级,人人干人人g,全新av网站每日更新播放,亚洲三及片,wwww无码视频,亚洲中文字幕无码一区在线

首頁(yè) 500強(qiáng) 活動(dòng) 榜單 商業(yè) 科技 領(lǐng)導(dǎo)力 專題 品牌中心
雜志訂閱

一家人工智能公司,,攻克了50年未解的醫(yī)學(xué)難題

Jeremy Kahn
2021-07-20

DeepMind能夠?qū)Υ蠖鄶?shù)蛋白質(zhì)類型做出十分精確的預(yù)測(cè),。

文本設(shè)置
小號(hào)
默認(rèn)
大號(hào)
Plus(0條)

總部位于倫敦的人工智能公司DeepMind在去年年底攻克了一個(gè)長(zhǎng)達(dá)50年的科學(xué)難題,通過(guò)使用人工智能軟件,,僅根據(jù)蛋白質(zhì)的遺傳密碼即可預(yù)測(cè)其折疊形狀,,該公司于近日公布了具體細(xì)節(jié)。

蛋白質(zhì)的形狀很重要,,因?yàn)樗兄谂袛嗟鞍踪|(zhì)的功能,。大多數(shù)藥物通過(guò)與蛋白質(zhì)結(jié)構(gòu)中具有某一特定形狀的“口袋”結(jié)合起作用。因此,,弄清楚蛋白質(zhì)的確切形狀可能是藥物開發(fā)過(guò)程中的關(guān)鍵一步,,DeepMind的突破或有助于加快藥物的研發(fā)過(guò)程。

蛋白質(zhì)的形狀通常使用某種成像方法確定,。X射線晶體學(xué)是其中最精確的方法之一,,通過(guò)將蛋白質(zhì)溶液結(jié)晶,然后被高能X射線轟擊,,對(duì)由此產(chǎn)生的衍射模式進(jìn)行分析,,從而構(gòu)建出蛋白質(zhì)的圖像。但這種方法昂貴,、耗時(shí),,有時(shí)讓人倍感焦慮。近年來(lái),,也出現(xiàn)了其他方法,,例如在極低的溫度下急速冷凍蛋白質(zhì),再通過(guò)電子顯微鏡進(jìn)行觀察,。

但早在1972年,,諾貝爾獎(jiǎng)得主、化學(xué)家克里斯蒂安?安芬森就提出,,僅僅通過(guò)蛋白質(zhì)的DNA序列,,就可以準(zhǔn)確預(yù)測(cè)其折疊成的確切形狀。然而,,憑借當(dāng)時(shí)的計(jì)算方法,、基因測(cè)序技術(shù)、以及計(jì)算能力(這點(diǎn)同樣十分重要),,還無(wú)法解決這種復(fù)雜的相關(guān)性問題,。

1994年,開始每?jī)赡昱e辦一次名為蛋白質(zhì)結(jié)構(gòu)關(guān)鍵評(píng)估(Critical Assessment of Protein Structure)的軟件競(jìng)賽,比賽內(nèi)容是通過(guò)基因序列來(lái)預(yù)測(cè)蛋白質(zhì)結(jié)構(gòu),。2018年,谷歌(Google)母公司Alphabet旗下的DeepMind公司首次使用深度學(xué)習(xí)系統(tǒng)參加了比賽,。深度學(xué)習(xí)系統(tǒng)是一種使用神經(jīng)網(wǎng)絡(luò)的人工智能,,一種以人腦連接方式為基本框架的軟件。DeepMind的系統(tǒng)名為AlphaFold,,輕松擊敗了其他所有團(tuán)隊(duì),,雖然仍遠(yuǎn)未達(dá)到X射線晶體學(xué)的精度,但已經(jīng)在預(yù)測(cè)精度上取得了巨大飛躍,。

2020年,,DeepMind攜重新設(shè)計(jì)的深度學(xué)習(xí)系統(tǒng)AlphaFold 2再次入圍。這一次,,DeepMind能夠?qū)Υ蠖鄶?shù)蛋白質(zhì)類型做出十分精確的預(yù)測(cè),,最終不僅贏得了比賽,蛋白質(zhì)結(jié)構(gòu)關(guān)鍵評(píng)估競(jìng)賽的組織者還宣布,,DeepMind基本上解決了安芬森最初提出的蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)問題,。

7月16日,在著名科學(xué)期刊《自然》(Nature)上發(fā)表的一篇同行評(píng)議文章中,,DeepMind具體解釋了其人工智能軟件為何可以有如此出色的表現(xiàn),。它還開放了AlphaFold 2的代碼供其他研究人員使用。

該公司此前曾經(jīng)表示,,可能會(huì)開發(fā)一個(gè)界面,,讓學(xué)術(shù)研究人員甚至制藥公司能夠通過(guò) AlphaFold 2來(lái)查詢蛋白質(zhì)的結(jié)構(gòu)預(yù)測(cè),但該公司尚未宣布任何類似計(jì)劃,。Deepmind之外的科學(xué)家即使擁有源代碼,,卻仍然需要自己訓(xùn)練神經(jīng)網(wǎng)絡(luò),才可以得到有意義的蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)結(jié)果,。

“我們承諾,,將分享我們的方法,并為科學(xué)界提供范圍廣泛的免費(fèi)使用途徑,?!盌eepMind的聯(lián)合創(chuàng)始人及首席執(zhí)行官德米斯?哈薩比斯在一份聲明中說(shuō)?!敖裉?,我們向承諾邁出了第一步?!惫_比斯表示,,關(guān)于如何讓更多人獲取AlphaFold2的預(yù)測(cè),公司“很快”會(huì)通報(bào)更多進(jìn)展,。

在《自然》雜志的論文里,,DeepMind寫道,,AlphaFold 2已經(jīng)幫助使用X射線晶體學(xué)和蛋白質(zhì)電子顯微鏡圖像方式的研究人員完善了他們對(duì)數(shù)據(jù)內(nèi)容的理解。該系統(tǒng)還能夠準(zhǔn)確預(yù)測(cè)和新冠病毒有關(guān)的一些關(guān)鍵蛋白質(zhì)的形狀,。

該論文顯示,,AlphaFold 2使用的神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)很復(fù)雜。該網(wǎng)絡(luò)包含兩個(gè)大模塊,,配合完成蛋白質(zhì)結(jié)構(gòu)的預(yù)測(cè),。

第一個(gè)模塊被DeepMind稱為“Evoformer”,負(fù)責(zé)讀取蛋白質(zhì)的原始基因序列,,以及該DNA密碼的哪些片段與其他結(jié)構(gòu)已知的蛋白質(zhì)中的片段共同進(jìn)化的數(shù)據(jù),。Evoformer將這些數(shù)據(jù)以圖表的方式呈現(xiàn),圖表以氨基酸對(duì)作為節(jié)點(diǎn),,用邊緣表示這些氨基酸對(duì)在蛋白質(zhì)中彼此之間的接近程度,。Evoformer有48個(gè)神經(jīng)網(wǎng)絡(luò)“塊”,每個(gè)“塊”可能由多層網(wǎng)絡(luò)組成,。

每個(gè)神經(jīng)塊使用各種先進(jìn)的機(jī)器學(xué)習(xí)技術(shù)對(duì)這張圖表進(jìn)行一系列處理,,再將其預(yù)測(cè)傳遞給下一個(gè)神經(jīng)塊做進(jìn)一步修訂。通過(guò)這種方式,,Evoformer逐漸完成了對(duì)蛋白質(zhì)主干形狀的預(yù)測(cè),。該系統(tǒng)使用的一些技術(shù)與最近自然語(yǔ)言處理取得的突破中使用的技術(shù)類似。

隨后,,Evoformer將其預(yù)測(cè)傳遞給第二個(gè)模塊,,即結(jié)構(gòu)預(yù)測(cè)模塊。該模塊由另外8個(gè)神經(jīng)網(wǎng)絡(luò)塊組成,,通過(guò)一系列幾何變換,,進(jìn)一步細(xì)化蛋白質(zhì)可能的形狀。特別的是,,這個(gè)模塊構(gòu)建了蛋白質(zhì)可能的“側(cè)鏈”的圖像,,在蛋白質(zhì)的抽象3D圖像中,這些側(cè)鏈看起來(lái)像是從蛋白質(zhì)主干分支出來(lái)的扭曲的帶狀花體,。

DeepMind在其論文中指出,,盡管AlphaFold 2對(duì)大多數(shù)已知蛋白質(zhì)結(jié)構(gòu)的精確度達(dá)到了不足一個(gè)原子寬度的距離,但在一些領(lǐng)域內(nèi)卻仍然存在瓶頸,。對(duì)于已知在蛋白質(zhì)間共同進(jìn)化的基因序列少于30個(gè)的蛋白質(zhì),,AlphaFold的準(zhǔn)確性大幅下降。DeepMind稱,,這種共同進(jìn)化信息“對(duì)于在網(wǎng)絡(luò)早期階段大致找到正確的結(jié)構(gòu)是必要的,。”

研究人員還表示,該系統(tǒng)對(duì)某些蛋白質(zhì)的預(yù)測(cè)不佳,,因?yàn)樗鼈兊男螤詈艽蟪潭壬鲜怯蓚?cè)鏈之間的相互作用決定的,,而不是沿著主干,或者包括兩條大相徑庭的氨基酸鏈相互交織,。但科學(xué)家們還寫道,,“我們預(yù)計(jì)”運(yùn)用AlphaFold的理念,未來(lái)將能夠準(zhǔn)確預(yù)測(cè)這種復(fù)雜的蛋白質(zhì)結(jié)合,,或許在暗示DeepMind可能已經(jīng)在這個(gè)問題上取得了幕后進(jìn)展,。(財(cái)富中文網(wǎng))

譯者:Agatha

總部位于倫敦的人工智能公司DeepMind在去年年底攻克了一個(gè)長(zhǎng)達(dá)50年的科學(xué)難題,,通過(guò)使用人工智能軟件,,僅根據(jù)蛋白質(zhì)的遺傳密碼即可預(yù)測(cè)其折疊形狀,該公司于近日公布了具體細(xì)節(jié),。

蛋白質(zhì)的形狀很重要,,因?yàn)樗兄谂袛嗟鞍踪|(zhì)的功能。大多數(shù)藥物通過(guò)與蛋白質(zhì)結(jié)構(gòu)中具有某一特定形狀的“口袋”結(jié)合起作用,。因此,,弄清楚蛋白質(zhì)的確切形狀可能是藥物開發(fā)過(guò)程中的關(guān)鍵一步,DeepMind的突破或有助于加快藥物的研發(fā)過(guò)程,。

蛋白質(zhì)的形狀通常使用某種成像方法確定,。X射線晶體學(xué)是其中最精確的方法之一,通過(guò)將蛋白質(zhì)溶液結(jié)晶,,然后被高能X射線轟擊,,對(duì)由此產(chǎn)生的衍射模式進(jìn)行分析,從而構(gòu)建出蛋白質(zhì)的圖像,。但這種方法昂貴,、耗時(shí),有時(shí)讓人倍感焦慮,。近年來(lái),,也出現(xiàn)了其他方法,例如在極低的溫度下急速冷凍蛋白質(zhì),,再通過(guò)電子顯微鏡進(jìn)行觀察,。

但早在1972年,諾貝爾獎(jiǎng)得主,、化學(xué)家克里斯蒂安?安芬森就提出,,僅僅通過(guò)蛋白質(zhì)的DNA序列,就可以準(zhǔn)確預(yù)測(cè)其折疊成的確切形狀,。然而,,憑借當(dāng)時(shí)的計(jì)算方法、基因測(cè)序技術(shù)、以及計(jì)算能力(這點(diǎn)同樣十分重要),,還無(wú)法解決這種復(fù)雜的相關(guān)性問題,。

1994年,開始每?jī)赡昱e辦一次名為蛋白質(zhì)結(jié)構(gòu)關(guān)鍵評(píng)估(Critical Assessment of Protein Structure)的軟件競(jìng)賽,,比賽內(nèi)容是通過(guò)基因序列來(lái)預(yù)測(cè)蛋白質(zhì)結(jié)構(gòu),。2018年,谷歌(Google)母公司Alphabet旗下的DeepMind公司首次使用深度學(xué)習(xí)系統(tǒng)參加了比賽,。深度學(xué)習(xí)系統(tǒng)是一種使用神經(jīng)網(wǎng)絡(luò)的人工智能,,一種以人腦連接方式為基本框架的軟件。DeepMind的系統(tǒng)名為AlphaFold,,輕松擊敗了其他所有團(tuán)隊(duì),,雖然仍遠(yuǎn)未達(dá)到X射線晶體學(xué)的精度,但已經(jīng)在預(yù)測(cè)精度上取得了巨大飛躍,。

2020年,,DeepMind攜重新設(shè)計(jì)的深度學(xué)習(xí)系統(tǒng)AlphaFold 2再次入圍。這一次,,DeepMind能夠?qū)Υ蠖鄶?shù)蛋白質(zhì)類型做出十分精確的預(yù)測(cè),,最終不僅贏得了比賽,蛋白質(zhì)結(jié)構(gòu)關(guān)鍵評(píng)估競(jìng)賽的組織者還宣布,,DeepMind基本上解決了安芬森最初提出的蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)問題,。

7月16日,在著名科學(xué)期刊《自然》(Nature)上發(fā)表的一篇同行評(píng)議文章中,,DeepMind具體解釋了其人工智能軟件為何可以有如此出色的表現(xiàn),。它還開放了AlphaFold 2的代碼供其他研究人員使用。

該公司此前曾經(jīng)表示,,可能會(huì)開發(fā)一個(gè)界面,,讓學(xué)術(shù)研究人員甚至制藥公司能夠通過(guò) AlphaFold 2來(lái)查詢蛋白質(zhì)的結(jié)構(gòu)預(yù)測(cè),但該公司尚未宣布任何類似計(jì)劃,。Deepmind之外的科學(xué)家即使擁有源代碼,,卻仍然需要自己訓(xùn)練神經(jīng)網(wǎng)絡(luò),才可以得到有意義的蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)結(jié)果,。

“我們承諾,,將分享我們的方法,并為科學(xué)界提供范圍廣泛的免費(fèi)使用途徑,?!盌eepMind的聯(lián)合創(chuàng)始人及首席執(zhí)行官德米斯?哈薩比斯在一份聲明中說(shuō)?!敖裉?,我們向承諾邁出了第一步,。”哈薩比斯表示,,關(guān)于如何讓更多人獲取AlphaFold2的預(yù)測(cè),,公司“很快”會(huì)通報(bào)更多進(jìn)展。

在《自然》雜志的論文里,,DeepMind寫道,,AlphaFold 2已經(jīng)幫助使用X射線晶體學(xué)和蛋白質(zhì)電子顯微鏡圖像方式的研究人員完善了他們對(duì)數(shù)據(jù)內(nèi)容的理解。該系統(tǒng)還能夠準(zhǔn)確預(yù)測(cè)和新冠病毒有關(guān)的一些關(guān)鍵蛋白質(zhì)的形狀,。

該論文顯示,,AlphaFold 2使用的神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)很復(fù)雜。該網(wǎng)絡(luò)包含兩個(gè)大模塊,,配合完成蛋白質(zhì)結(jié)構(gòu)的預(yù)測(cè),。

第一個(gè)模塊被DeepMind稱為“Evoformer”,負(fù)責(zé)讀取蛋白質(zhì)的原始基因序列,,以及該DNA密碼的哪些片段與其他結(jié)構(gòu)已知的蛋白質(zhì)中的片段共同進(jìn)化的數(shù)據(jù),。Evoformer將這些數(shù)據(jù)以圖表的方式呈現(xiàn),,圖表以氨基酸對(duì)作為節(jié)點(diǎn),,用邊緣表示這些氨基酸對(duì)在蛋白質(zhì)中彼此之間的接近程度。Evoformer有48個(gè)神經(jīng)網(wǎng)絡(luò)“塊”,,每個(gè)“塊”可能由多層網(wǎng)絡(luò)組成,。

每個(gè)神經(jīng)塊使用各種先進(jìn)的機(jī)器學(xué)習(xí)技術(shù)對(duì)這張圖表進(jìn)行一系列處理,再將其預(yù)測(cè)傳遞給下一個(gè)神經(jīng)塊做進(jìn)一步修訂,。通過(guò)這種方式,,Evoformer逐漸完成了對(duì)蛋白質(zhì)主干形狀的預(yù)測(cè)。該系統(tǒng)使用的一些技術(shù)與最近自然語(yǔ)言處理取得的突破中使用的技術(shù)類似,。

隨后,,Evoformer將其預(yù)測(cè)傳遞給第二個(gè)模塊,即結(jié)構(gòu)預(yù)測(cè)模塊,。該模塊由另外8個(gè)神經(jīng)網(wǎng)絡(luò)塊組成,,通過(guò)一系列幾何變換,進(jìn)一步細(xì)化蛋白質(zhì)可能的形狀,。特別的是,,這個(gè)模塊構(gòu)建了蛋白質(zhì)可能的“側(cè)鏈”的圖像,在蛋白質(zhì)的抽象3D圖像中,,這些側(cè)鏈看起來(lái)像是從蛋白質(zhì)主干分支出來(lái)的扭曲的帶狀花體,。

DeepMind在其論文中指出,盡管AlphaFold 2對(duì)大多數(shù)已知蛋白質(zhì)結(jié)構(gòu)的精確度達(dá)到了不足一個(gè)原子寬度的距離,,但在一些領(lǐng)域內(nèi)卻仍然存在瓶頸,。對(duì)于已知在蛋白質(zhì)間共同進(jìn)化的基因序列少于30個(gè)的蛋白質(zhì),,AlphaFold的準(zhǔn)確性大幅下降。DeepMind稱,,這種共同進(jìn)化信息“對(duì)于在網(wǎng)絡(luò)早期階段大致找到正確的結(jié)構(gòu)是必要的,。”

研究人員還表示,,該系統(tǒng)對(duì)某些蛋白質(zhì)的預(yù)測(cè)不佳,,因?yàn)樗鼈兊男螤詈艽蟪潭壬鲜怯蓚?cè)鏈之間的相互作用決定的,而不是沿著主干,,或者包括兩條大相徑庭的氨基酸鏈相互交織,。但科學(xué)家們還寫道,“我們預(yù)計(jì)”運(yùn)用AlphaFold的理念,,未來(lái)將能夠準(zhǔn)確預(yù)測(cè)這種復(fù)雜的蛋白質(zhì)結(jié)合,,或許在暗示DeepMind可能已經(jīng)在這個(gè)問題上取得了幕后進(jìn)展。(財(cái)富中文網(wǎng))

譯者:Agatha

DeepMind, the London-based artificial intelligence company, has published further details of how it solved a 50-year-old scientific challenge late last year, using A.I. software to predict the shape into which proteins would fold based solely on their genetic code.

The shape of a protein is important because it helps determine that protein’s function. Most drugs work by binding to very specifically shaped “pockets” within the structure of a protein. So knowing the exact shape of the protein can be a critical step in the development of new pharmaceuticals, and DeepMind’s breakthrough has the potential to accelerate drug discovery.

The shape of a proteins is usually determined using some kind of imaging method. One of the most accurate is X-ray crystallography, in which a solution of proteins is crystallized and then bombarded with high-powered X-rays and the resulting diffraction patterns analyzed to build up a picture of the protein. But the method is expensive, time-consuming, and sometimes fraught. More recently, other methods have been used, such as flash-freezing the proteins at extremely low temperatures and then examining them in electron microscopes.

But back in 1972, Nobel laureate chemist Christian Anfinsen postulated that it should be possible to accurately predict the exact shape a protein will fold into just by looking at its DNA sequence. At the time, however, the computational methods, the gene sequencing techniques, and just as important, the computing power, to work out such complex correlations did not exist.

A biennial contest for software that could accurately predict protein structure from genetic sequences, called the Critical Assessment of Protein Structure (or CASP) competition, began in 1994. In 2018, DeepMind—which is owned by Google parent-company Alphabet—entered the competition for the first time using a deep-learning system, a kind of artificial intelligence that uses neural networks: software that is loosely based on the way connections in the human brain work. DeepMind’s system, which it called AlphaFold, handily beat all the other teams, making a big leap forward in prediction accuracy, although it was still far from equaling the accuracy of X-ray crystallography.

Last year, DeepMind entered again with a redesigned deep-learning system, AlphaFold 2. This time it was able to make predictions that were so accurate across most protein types that not only did the A.I. company’s team win the contest, the CASP organizers themselves declared that DeepMind had essentially solved the protein structure prediction problem as Anfinsen had first formulated it.

On July 16, in a peer-reviewed paper published in the prestigious scientific journal Nature, DeepMind offered further details of how exactly its A.I. software was able to perform so well. It has also open-sourced the code it used to create AlphaFold 2 for other researchers to use.

The company has said previously that it may develop an interface that would allow academic researchers and possibly even pharmaceutical companies to simply query AlphaFold 2 for protein structure predictions, but the company has not yet announced any such access. Having the source code would still require non-DeepMind scientists to train the neural network themselves before they could derive useful protein structure predictions.

“We pledged to share our methods and provide broad, free access to the scientific community,” Demis Hassabis, DeepMind’s cofounder and chief executive officer, said in a statement. “Today we take the first step toward delivering on that commitment.” Hassabis promised to share more updates “soon” on the company’s progress toward making AlphaFold2’s predictions more widely available.

In its Nature paper, DeepMind wrote that AlphaFold 2 has already helped those who study X-ray crystallography and electron microscope images of proteins to better refine their understanding of what they are seeing in that data. The system has also already proven that it can accurately predict the shape of some key proteins associated with SARS-CoV-2, the virus that causes COVID-19.

The design of the neural network used in AlphaFold 2, according to the Nature paper, is complicated. It consists of two large modules that work together to create a prediction of a protein’s structure.

The first module, which DeepMind calls Evoformer, takes in both the protein’s raw genetic sequence and data about which parts of that DNA code have co-evolved with those found in other proteins for which there is a known structure. The Evoformer then represents the data as a graph, in which the nodes of the graph are amino-acid pairs and the edges of the graph represent the proximity of those pairs to one another in the protein. This Evoformer has 48 neural network “blocks,” each of which might consist of multiple layers of the network.

Each of these blocks performs a series of manipulations of this graph, using a variety of state-of-the-art machine-learning techniques, before passing its prediction along to the next block for further revision. In this way, the entire Evoformer gradually refines a forecast for what the backbone of the protein should look like. Some of the techniques the system uses are similar to those that underpin recent breakthroughs in natural language processing.

The Evoformer then passes its prediction to a second module, called the Structure Prediction Module. Consisting of eight more neural network blocks, it performs a series of geometric transformations to further refine the protein’s likely shape. In particular, this module builds up a picture of the protein’s likely “side chains,” which in abstracted 3D images of proteins appears as twisty, ribbonlike curlicues that branch off from the main protein backbone.

DeepMind noted in its paper that while AlphaFold 2 achieved accuracy to within a fraction of an atom’s width of distance for a majority of known protein structures, there were still some areas where it struggled. For proteins where there were fewer than 30 genetic sequences that are known to have co-evolved across proteins, AlphaFold’s accuracy dropped substantially. DeepMind said it thought this co-evolution information was “needed to coarsely find the correct structure in the early stages of the network.”

The researchers also said the system did not perform as well for certain kinds of proteins where their shape is largely determined by interactions between the side chains rather than along the backbone, or that consisted of the intertwining of two very different amino-acid chains. But the scientists also wrote that “we expect” the same ideas used in AlphaFold will be able to accurately predict such complex protein bindings in the future, hinting that perhaps DeepMind has already made progress on this problem behind the scenes.

財(cái)富中文網(wǎng)所刊載內(nèi)容之知識(shí)產(chǎn)權(quán)為財(cái)富媒體知識(shí)產(chǎn)權(quán)有限公司及/或相關(guān)權(quán)利人專屬所有或持有,。未經(jīng)許可,,禁止進(jìn)行轉(zhuǎn)載、摘編,、復(fù)制及建立鏡像等任何使用,。
0條Plus
精彩評(píng)論
評(píng)論

撰寫或查看更多評(píng)論

請(qǐng)打開財(cái)富Plus APP

前往打開
熱讀文章