
眾所周知,,“死語言”(Dead languages)的破譯難度極大。破譯羅塞塔石碑(Rosetta Stone)上的埃及象形文字用了23年,,破譯瑪雅石刻(Mayan Glyphs)用了近兩個(gè)世紀(jì),,破譯希臘語的最早形式——線形文字B(Linear B)更是用了足足3,000多年。在談及AI的顛覆性潛力時(shí),,技術(shù)樂觀主義者(techno-optimist)經(jīng)常會(huì)提到這樣的難題,,而且即便對于那些已經(jīng)得到破譯的語言來說,挑戰(zhàn)也依然存在,。阿卡德楔形文字就是一個(gè)很好的例子,,作為全球最古老的書面語言之一,能夠閱讀這種滅絕語言的人寥寥無幾,,導(dǎo)致至今仍然有近百萬篇阿卡德語文本尚未得到翻譯,,但現(xiàn)在,AI工具只需要幾秒就可以完成這些文本的翻譯工作,。
今年5月,,一個(gè)由計(jì)算機(jī)科學(xué)和歷史研究人員組成的跨學(xué)科小組發(fā)表了一篇期刊文章,,介紹了他們開發(fā)的一種能夠?qū)糯笮巫址M(jìn)行即時(shí)翻譯的AI模型,。該小組由谷歌(Google)的軟件工程師和阿里爾大學(xué)(Ariel University)的亞述學(xué)專家領(lǐng)導(dǎo),使用與谷歌翻譯(Google Translate)相同的底層技術(shù)和現(xiàn)有楔形文字翻譯資料對該模型進(jìn)行的訓(xùn)練,。
照亮漫漫譯路的燈塔
在翻譯死語言,,特別是那些沒有后代語言(descendant languages)的語言時(shí),由于沒有豐富的文化背景,,推敲詞義的工作就像一場漫無目的的旅行,。阿卡德語就是如此。公元前24世紀(jì)至22世紀(jì),,阿卡德語通行于阿卡德帝國(Akkadian Empire,,位于今伊拉克),既有語言,,也有文字,,其楔形文字系統(tǒng)使用的是一種由彼此相交的尖銳三角形符號(hào)組成的字母。阿卡德人通常用蘆葦?shù)男ㄐ文┒嗽谀喟迳蠈懽郑ā癱uneiform”在拉丁文中就是“楔形”的意思),。由于這種材料結(jié)實(shí)耐用,,即便經(jīng)過千年風(fēng)雨的洗禮之后,現(xiàn)在仍然有數(shù)十萬塊載有楔形文字的石板存世,,在各所大學(xué)和博物館的大廳中展出,,供后人瞻仰,。
外界常常誤以為翻譯就是對外語單詞或短語進(jìn)行一對一的“解碼”。但受細(xì)微文化差別和語言結(jié)構(gòu)差異的影響,,一種語言在另一種語言中往往并沒有準(zhǔn)確或直白的對應(yīng)表達(dá),。要想做出高質(zhì)量的翻譯,譯者必須對兩種語言的結(jié)構(gòu),、相關(guān)文化以及支撐文化的歷史有深刻的了解,。要想在翻譯時(shí)保留原文原有的語氣、節(jié)奏,,甚至幽默感,,必須有高超的技巧,而如果我們對源語言的文化背景知之甚少,,這項(xiàng)工作就將難如登天,。
現(xiàn)存的楔形文字語料浩如煙海,但可以翻譯阿卡德語的語言學(xué)家卻寥寥無幾,。這意味著有關(guān)這個(gè)重要早期文明(有時(shí)被認(rèn)為是史上第一個(gè)帝國)的知識(shí)寶庫完全沒有得到開發(fā),。目前,現(xiàn)存石板的數(shù)量和考古學(xué)家挖掘出新石板的速度遠(yuǎn)遠(yuǎn)超出了語言學(xué)家的翻譯能力,。但在AI技術(shù)應(yīng)用于楔形文字翻譯工作后,,這種情況或?qū)⒏淖儭?/p>
該團(tuán)隊(duì)寫道:“記載著古代美索不達(dá)米亞政治、社會(huì),、經(jīng)濟(jì)和科學(xué)歷史的楔形文字泥板數(shù)以萬計(jì),。但由于這些資料數(shù)量龐大,而能夠讀懂的專家又很少,,因此大多尚未得到翻譯,,自然也就無法加以利用?!?/p>
該團(tuán)隊(duì)開發(fā)的AI工具可以進(jìn)行兩種翻譯工作:一是將楔形文字翻譯成英語,,二是對楔形文字進(jìn)行音譯(標(biāo)注出該文字的讀音)。根據(jù)最佳雙語替換評(píng)測4(Best Bilingual Evaluation Understudy 4,,用于衡量翻譯質(zhì)量),,該AI工具在執(zhí)行上述兩種翻譯任務(wù)時(shí)分別能夠得到36.52和37.47的高分,均高于團(tuán)隊(duì)目標(biāo),,并且已經(jīng)達(dá)到高質(zhì)量翻譯的標(biāo)準(zhǔn),。最佳雙語替換評(píng)測4的分值區(qū)間為0到100(或0到1),70分是專業(yè)人類譯員實(shí)際可以達(dá)到的最高分,。
普林斯頓大學(xué)(Princeton University)的計(jì)算語言學(xué)家湯姆·麥考伊說,,幾十年來,機(jī)翻的結(jié)果都不夠穩(wěn)定,,質(zhì)量也不高,。過去的翻譯程序只能根據(jù)內(nèi)置語法規(guī)則機(jī)械地工作,,往往無法理解游離于正規(guī)語法之外的成語和有言外之意的表達(dá)的豐富內(nèi)涵。但近期出現(xiàn)的AI 翻譯工具(比如這款楔形文字翻譯工具)已經(jīng)可以深入語言的這種“模糊”領(lǐng)域,。這預(yù)示著我們即將迎來由AI賦能的計(jì)算語言學(xué)新時(shí)代,,想想都令人激動(dòng)不已。
麥考伊說:“新近推出的AI程序引入了統(tǒng)計(jì)處理這樣一個(gè)重要的新工具,。統(tǒng)計(jì)處理依然是一種數(shù)學(xué)工具,,只是不像大家過去用的數(shù)學(xué)工具那么死板。統(tǒng)計(jì)學(xué)的應(yīng)用讓我們在某種程度上克服了傳統(tǒng)方案的缺陷,。我們現(xiàn)在用的是機(jī)器學(xué)習(xí)和深度學(xué)習(xí),。機(jī)器能夠?qū)W習(xí)所有的習(xí)語、成語和特殊表達(dá),,而這正是前代AI所不具備的能力,。”
“永遠(yuǎn)不能盲目相信機(jī)翻結(jié)果”
該楔形文字AI翻譯工具仍然會(huì)犯錯(cuò),,而且和其他AI工具一樣,,也會(huì)出現(xiàn)“幻覺”。舉個(gè)例子,,該工具曾經(jīng)把“為什么我們(也)要在一個(gè)來自利比阿利的人面前進(jìn)行訴訟,?”譯成了“他們在內(nèi)城的內(nèi)城”。
盡管時(shí)有錯(cuò)誤,,但該工具卻仍然可以在文本初步處理方面為我們節(jié)省大量的人力和時(shí)間,。
在談及使用AI技術(shù)進(jìn)行翻譯時(shí),麥考伊說:“AI技術(shù)令人贊嘆,,只是目前仍然不十分可靠,。雖然時(shí)有亮眼表現(xiàn),,但我們永遠(yuǎn)不能盲目相信它輸出的結(jié)果,。也就是說,最適合交給AI處理的是那些需要耗費(fèi)大量勞動(dòng),,同時(shí)人類很難完成的工作,。不過在AI輸出結(jié)果后,只需進(jìn)行人工審核即可,,這就簡單多了,。”
該模型在翻譯短句和公式化文本(例如公文記錄)時(shí)準(zhǔn)確度最高,。出乎研究人員意料的是,,其還能在譯文中重現(xiàn)特定體裁的細(xì)微差別。研究人員寫道,,未來,,隨著可以用于AI訓(xùn)練的翻譯樣本越來越多,,其準(zhǔn)確性將進(jìn)一步提高。
該模型目前能夠用于協(xié)助研究人員完成初譯,,再交由人工對譯文進(jìn)行校對,、潤色。
“未來,,該模型將可以向用戶展示其譯文所依據(jù)的材料列表,,這一功能對學(xué)術(shù)研究而言可能尤為實(shí)用?!毖芯咳藛T寫道,。(財(cái)富中文網(wǎng))
譯者:梁宇
審校:夏林
眾所周知,“死語言”(Dead languages)的破譯難度極大,。破譯羅塞塔石碑(Rosetta Stone)上的埃及象形文字用了23年,,破譯瑪雅石刻(Mayan Glyphs)用了近兩個(gè)世紀(jì),破譯希臘語的最早形式——線形文字B(Linear B)更是用了足足3,000多年,。在談及AI的顛覆性潛力時(shí),,技術(shù)樂觀主義者(techno-optimist)經(jīng)常會(huì)提到這樣的難題,而且即便對于那些已經(jīng)得到破譯的語言來說,,挑戰(zhàn)也依然存在,。阿卡德楔形文字就是一個(gè)很好的例子,作為全球最古老的書面語言之一,,能夠閱讀這種滅絕語言的人寥寥無幾,,導(dǎo)致至今仍然有近百萬篇阿卡德語文本尚未得到翻譯,但現(xiàn)在,,AI工具只需要幾秒就可以完成這些文本的翻譯工作,。
今年5月,一個(gè)由計(jì)算機(jī)科學(xué)和歷史研究人員組成的跨學(xué)科小組發(fā)表了一篇期刊文章,,介紹了他們開發(fā)的一種能夠?qū)糯笮巫址M(jìn)行即時(shí)翻譯的AI模型,。該小組由谷歌(Google)的軟件工程師和阿里爾大學(xué)(Ariel University)的亞述學(xué)專家領(lǐng)導(dǎo),使用與谷歌翻譯(Google Translate)相同的底層技術(shù)和現(xiàn)有楔形文字翻譯資料對該模型進(jìn)行的訓(xùn)練,。
照亮漫漫譯路的燈塔
在翻譯死語言,,特別是那些沒有后代語言(descendant languages)的語言時(shí),由于沒有豐富的文化背景,,推敲詞義的工作就像一場漫無目的的旅行,。阿卡德語就是如此。公元前24世紀(jì)至22世紀(jì),,阿卡德語通行于阿卡德帝國(Akkadian Empire,,位于今伊拉克),既有語言,,也有文字,,其楔形文字系統(tǒng)使用的是一種由彼此相交的尖銳三角形符號(hào)組成的字母,。阿卡德人通常用蘆葦?shù)男ㄐ文┒嗽谀喟迳蠈懽郑ā癱uneiform”在拉丁文中就是“楔形”的意思)。由于這種材料結(jié)實(shí)耐用,,即便經(jīng)過千年風(fēng)雨的洗禮之后,,現(xiàn)在仍然有數(shù)十萬塊載有楔形文字的石板存世,在各所大學(xué)和博物館的大廳中展出,,供后人瞻仰,。
外界常常誤以為翻譯就是對外語單詞或短語進(jìn)行一對一的“解碼”。但受細(xì)微文化差別和語言結(jié)構(gòu)差異的影響,,一種語言在另一種語言中往往并沒有準(zhǔn)確或直白的對應(yīng)表達(dá),。要想做出高質(zhì)量的翻譯,譯者必須對兩種語言的結(jié)構(gòu),、相關(guān)文化以及支撐文化的歷史有深刻的了解,。要想在翻譯時(shí)保留原文原有的語氣、節(jié)奏,,甚至幽默感,,必須有高超的技巧,而如果我們對源語言的文化背景知之甚少,,這項(xiàng)工作就將難如登天,。
現(xiàn)存的楔形文字語料浩如煙海,但可以翻譯阿卡德語的語言學(xué)家卻寥寥無幾,。這意味著有關(guān)這個(gè)重要早期文明(有時(shí)被認(rèn)為是史上第一個(gè)帝國)的知識(shí)寶庫完全沒有得到開發(fā),。目前,現(xiàn)存石板的數(shù)量和考古學(xué)家挖掘出新石板的速度遠(yuǎn)遠(yuǎn)超出了語言學(xué)家的翻譯能力,。但在AI技術(shù)應(yīng)用于楔形文字翻譯工作后,,這種情況或?qū)⒏淖儭?/p>
該團(tuán)隊(duì)寫道:“記載著古代美索不達(dá)米亞政治、社會(huì),、經(jīng)濟(jì)和科學(xué)歷史的楔形文字泥板數(shù)以萬計(jì),。但由于這些資料數(shù)量龐大,而能夠讀懂的專家又很少,,因此大多尚未得到翻譯,,自然也就無法加以利用,?!?/p>
該團(tuán)隊(duì)開發(fā)的AI工具可以進(jìn)行兩種翻譯工作:一是將楔形文字翻譯成英語,二是對楔形文字進(jìn)行音譯(標(biāo)注出該文字的讀音),。根據(jù)最佳雙語替換評(píng)測4(Best Bilingual Evaluation Understudy 4,,用于衡量翻譯質(zhì)量),該AI工具在執(zhí)行上述兩種翻譯任務(wù)時(shí)分別能夠得到36.52和37.47的高分,,均高于團(tuán)隊(duì)目標(biāo),,并且已經(jīng)達(dá)到高質(zhì)量翻譯的標(biāo)準(zhǔn),。最佳雙語替換評(píng)測4的分值區(qū)間為0到100(或0到1),70分是專業(yè)人類譯員實(shí)際可以達(dá)到的最高分,。
普林斯頓大學(xué)(Princeton University)的計(jì)算語言學(xué)家湯姆·麥考伊說,,幾十年來,機(jī)翻的結(jié)果都不夠穩(wěn)定,,質(zhì)量也不高,。過去的翻譯程序只能根據(jù)內(nèi)置語法規(guī)則機(jī)械地工作,往往無法理解游離于正規(guī)語法之外的成語和有言外之意的表達(dá)的豐富內(nèi)涵,。但近期出現(xiàn)的AI 翻譯工具(比如這款楔形文字翻譯工具)已經(jīng)可以深入語言的這種“模糊”領(lǐng)域,。這預(yù)示著我們即將迎來由AI賦能的計(jì)算語言學(xué)新時(shí)代,想想都令人激動(dòng)不已,。
麥考伊說:“新近推出的AI程序引入了統(tǒng)計(jì)處理這樣一個(gè)重要的新工具,。統(tǒng)計(jì)處理依然是一種數(shù)學(xué)工具,只是不像大家過去用的數(shù)學(xué)工具那么死板,。統(tǒng)計(jì)學(xué)的應(yīng)用讓我們在某種程度上克服了傳統(tǒng)方案的缺陷,。我們現(xiàn)在用的是機(jī)器學(xué)習(xí)和深度學(xué)習(xí)。機(jī)器能夠?qū)W習(xí)所有的習(xí)語,、成語和特殊表達(dá),,而這正是前代AI所不具備的能力?!?/p>
“永遠(yuǎn)不能盲目相信機(jī)翻結(jié)果”
該楔形文字AI翻譯工具仍然會(huì)犯錯(cuò),,而且和其他AI工具一樣,也會(huì)出現(xiàn)“幻覺”,。舉個(gè)例子,,該工具曾經(jīng)把“為什么我們(也)要在一個(gè)來自利比阿利的人面前進(jìn)行訴訟?”譯成了“他們在內(nèi)城的內(nèi)城”,。
盡管時(shí)有錯(cuò)誤,,但該工具卻仍然可以在文本初步處理方面為我們節(jié)省大量的人力和時(shí)間。
在談及使用AI技術(shù)進(jìn)行翻譯時(shí),,麥考伊說:“AI技術(shù)令人贊嘆,,只是目前仍然不十分可靠。雖然時(shí)有亮眼表現(xiàn),,但我們永遠(yuǎn)不能盲目相信它輸出的結(jié)果,。也就是說,最適合交給AI處理的是那些需要耗費(fèi)大量勞動(dòng),,同時(shí)人類很難完成的工作,。不過在AI輸出結(jié)果后,只需進(jìn)行人工審核即可,這就簡單多了,?!?/p>
該模型在翻譯短句和公式化文本(例如公文記錄)時(shí)準(zhǔn)確度最高。出乎研究人員意料的是,,其還能在譯文中重現(xiàn)特定體裁的細(xì)微差別,。研究人員寫道,未來,,隨著可以用于AI訓(xùn)練的翻譯樣本越來越多,,其準(zhǔn)確性將進(jìn)一步提高。
該模型目前能夠用于協(xié)助研究人員完成初譯,,再交由人工對譯文進(jìn)行校對,、潤色。
“未來,,該模型將可以向用戶展示其譯文所依據(jù)的材料列表,,這一功能對學(xué)術(shù)研究而言可能尤為實(shí)用?!毖芯咳藛T寫道,。(財(cái)富中文網(wǎng))
譯者:梁宇
審校:夏林
Dead languages are famously hard to decipher. It took 23 years to crack the Egyptian hieroglyphics on the Rosetta Stone. It took nearly two centuries to understand Mayan glyphs. And it took over 3,000 years to reveal Linear B, the earliest form of Greek. When techno-optimists talk about the game-changing potential of A.I., they cite difficult problems like this, and even for languages that have already been translated, challenges remain. Consider Akkadian cuneiform, one of the world’s oldest written languages. There are so few people who can read the extinct language that nearly a million Akkadian texts still haven’t been translated to date—but now an A.I. tool can decode them within seconds.
An interdisciplinary group of computer science and history researchers published a journal article in May describing how they had created an A.I. model to instantly translate the ancient glyphs. The team, led by a Google software engineer and an Assyriologist from Ariel University, trained the model on existing cuneiform translations using the same technology that powers Google Translate.
A beacon to weary translation travelers
In translating dead languages, especially those with no descendant languages, piecing together meaning without a wealth of cultural context can be like traveling without a North Star. Akkadian is just such a language. The tongue of the Akkadian Empire, located in present-day Iraq during the 24th to 22nd centuries BCE, Akkadian existed as both a spoken and written language. Its cuneiform writing system used an alphabet of sharp, intersecting triangular figures. Akkadians typically wrote by marking a clay tablet with the wedge-shaped end of a reed (cuneiform literally means “wedge shaped” in Latin). Hundreds of thousands of these tablets, due to the durability of their material, have weathered the centuries and now populate the halls of various universities and museums.
Translation is often misunderstood as a one-to-one decryption of a foreign word or phrase. But many times, a statement in one language doesn’t have an exact or easy equivalent in another, accounting for cultural nuance and difference in the languages’ construction. High-quality translation requires a deep knowledge of both languages’ structures, their surrounding cultures, and the histories that anchor those cultures. Translating a text while preserving its original tone, cadence, and even humor is a delicate craft—and an incredibly difficult one when the language’s culture is largely unknown.
The number of existing cuneiform texts is overwhelming compared to the small number of linguists who are able to translate Akkadian. This means that troves of knowledge on the significant early civilization, sometimes considered the first empire in history, are completely untapped. Right now, the number of existing tablets and the rate of new tablets being excavated by archaeologists outpace linguists’ translation efforts. But that could change with the integration of A.I. into the cuneiform interpretation process.
“Hundreds of thousands of clay tablets inscribed in the cuneiform script document the political, social, economic, and scientific history of ancient Mesopotamia,” the team wrote. “Yet, most of these documents remain untranslated and inaccessible due to their sheer number and limited quantity of experts able to read them.”
The A.I. can perform two types of translation—translating cuneiform to English, and transliterating cuneiform (rewriting it phonetically). The A.I.’s skill at the two translation types of translation scored 36.52 and 37.47, respectively, on the Best Bilingual Evaluation Understudy 4 (BLEU4), a measure of translation quality. These scores were above the team’s target, and are both high enough to be considered high-quality translations. BLEU4 scores on a scale of 0 to 100 (or 0 to 1) with 70 being the highest that could be realistically achieved by a very skilled human translator.
For decades, computer-generated translations were brittle and unreliable, Tom McCoy, a computational linguist at Princeton University, said. Translation programs embedded with grammatical rules always missed the richness of meaning in idioms and nonliteral language that slip through the cracks of formal grammar. But recently, A.I. programs like the cuneiform translator have been able to get at the “fuzzier” areas of language. It heralds an exciting new period of A.I.-propelled computational linguistics.
“In recent A.I., the big new thing is statistical processing, which is another type of math but not the sort of rigid rules that people were working with before,” McCoy said. “Statistics got us kind of over the hump of previous methods. We’re now working with machine learning and deep learning. Machines are able to learn all these idiosyncrasies, idioms, and exceptions to rules, which is what was missing in the previous generation of A.I.”
“You can never really trust the output”
The cuneiform A.I.’s translations still had mistakes—and had “hallucinations” as is common with A.I. In one example, it translated “Why should we (also) conduct the lawsuit before a man from Libbi-Ali?” as “They are in the Inner City in the Inner City.”
Despite occasional errors, the tool still saved huge amounts of time and human labor in its initial processing of the texts.
“A.I. currently is remarkable but unreliable. So it can do really amazing things, but you can never really trust the output it produces,” McCoy said of using A.I. for translation. “This means that the best case for using A.I. is something where it’s very labor intensive, hard for humans to do, but once A.I. has given you some output, it’s easy for humans to verify it.”
The model was most accurate when translating shorter sentences and formulaic texts like administrative records. It was also—surprisingly to the researchers—able to reproduce genre-specific nuances in translation. In the future, the A.I. will be trained on larger and larger samples of translations to further improve its accuracy, the researchers wrote.
For now, it can assist researchers by producing preliminary translations that humans can then check for accuracy and refine in nuance.
“A promising future scenario would have the [model] show the user a list of sources on which they based their translations, which would also be particularly useful for scholarly purposes,” the researchers wrote.