在投資界有一種常見的說法,,那就是在淘金熱期間真正賺到錢的人并不是礦工,而是那些向礦工出售開采所需的鎬頭和鐵鍬的企業(yè)家,。講述這個故事的投資者通常會提到加州第一位百萬富翁的故事,他是一位名叫塞繆爾·布蘭南(Samuel Brannan)的商人和報(bào)紙出版商,,在19世紀(jì)40年代和50年代以高價(jià)向淘金者出售設(shè)備和物資,,賺取了大部分財(cái)富,。有些人甚至?xí)岬嚼罹S·斯特勞斯(Levi Strauss),,這位德國出生的商人將精美商品進(jìn)口到舊金山,當(dāng)然也包括藍(lán)色牛仔褲。施特勞斯從未在采礦上花費(fèi)一分一秒時(shí)間,,但他確實(shí)從那個時(shí)代的淘金熱中獲得了豐厚的利潤。
這種“鎬頭和鐵鍬”的說法無疑是有道理的,,在當(dāng)今更關(guān)注科技的“淘金熱”時(shí)代,投資者的決策仍受這種說法的影響,,但這也只是故事的一部分,。雖然第一批從淘金熱中獲利的是少數(shù)幸運(yùn)的礦工和那些向他們出售物資和設(shè)備的人,但那個時(shí)代繁榮所產(chǎn)生的全面影響波及范圍廣,,利潤在全球范圍內(nèi)分配,。淘金熱為第一條橫貫大陸的鐵路提供了資金,,帶動加州農(nóng)業(yè)(“綠色黃金”)實(shí)現(xiàn)繁榮,,加速工業(yè)化進(jìn)程,增加國際貿(mào)易,,并催生運(yùn)輸和通信創(chuàng)新。
關(guān)鍵在于:對于投資者和全球經(jīng)濟(jì)而言,,革命性發(fā)現(xiàn)或創(chuàng)新都是千載難逢的機(jī)遇,其真正的標(biāo)志往往是長期網(wǎng)絡(luò)效應(yīng),;在鎬頭和鐵鍬賣家已經(jīng)賺到錢之后產(chǎn)生的積極的二級和三級影響。18世紀(jì)的運(yùn)河繁榮時(shí)期,、以及90年代末和21世紀(jì)初的互聯(lián)網(wǎng)時(shí)代,,都是如此,。
隨著這十年的人工智能熱潮與淘金熱的相提并論,投資者多年來一直在尋找這些網(wǎng)絡(luò)效應(yīng)的證據(jù),,試圖將炒作與現(xiàn)實(shí)區(qū)分開來。許多相當(dāng)重要的研究和預(yù)測都表示,,人工智能可以提高生產(chǎn)率,,迎來創(chuàng)新時(shí)代,甚至可以長期增加國內(nèi)生產(chǎn)總值,,但到目前為止,只有少數(shù)幾家公司真正從人工智能熱潮中獲利,。
英偉達(dá)(Nvidia)和阿斯麥(ASML)等科技巨頭出售人工智能革命的“鎬頭和鐵鍬”,,即人工智能得以運(yùn)行的底層技術(shù),它們的表現(xiàn)持續(xù)優(yōu)于其他公司,,而且似乎有望持續(xù)這一勢頭。但在這些巨頭之外,,關(guān)于人工智能提高生產(chǎn)率和促進(jìn)經(jīng)濟(jì)發(fā)展的實(shí)際證據(jù)卻更為微妙,。
然而,思愛普可能是人工智能影響日益突出的一個例子,。這家總部位于德國沃爾多夫的科技巨頭擁有約10.8萬名員工,市值達(dá)2250億美元,,是全球領(lǐng)先的企業(yè)資源規(guī)劃(以下簡稱ERP)軟件供應(yīng)商,主要為大型企業(yè)提供后臺辦公引擎,。
思愛普的ERP軟件正日益轉(zhuǎn)向云計(jì)算,有助于供應(yīng)鏈管理,、會計(jì)、人力資源,、支出和許多其他業(yè)務(wù)運(yùn)營。今年1月,,思愛普的主要投資者紅杉基金(Sequoia Fund)的投資顧問和分銷商Ruane Cunniff LP在致股東的年度信中解釋說,,“對于在物理世界制造或移動產(chǎn)品的跨國企業(yè)來說,,思愛普幾乎是不二之選,?!?/p>
盡管思愛普不是一家人工智能公司,,也不出售支持人工智能的鎬頭和鐵鍬,,但卻間接和直接地從這項(xiàng)技術(shù)的興起中受益。思愛普首席財(cái)務(wù)官多米尼克·阿薩姆(Dominik Asam)在接受《財(cái)富》雜志采訪時(shí)解釋說,,人工智能的繁榮有助于推動公司實(shí)現(xiàn)增長,,并表示他將致力于利用這項(xiàng)技術(shù)提高生產(chǎn)率,,削減公司內(nèi)部成本。
在談到人工智能的炒作與現(xiàn)實(shí)問題時(shí),,阿薩姆也表示看好人工智能的前景,。他在接受《財(cái)富》雜志采訪時(shí)表示:"這不是曇花一現(xiàn),,也不是炒作,而是科技行業(yè)最大的顛覆性技術(shù)之一,?!?/p>
思愛普案例研究:人工智能的增量收益和潛在隱患
鞏固云業(yè)務(wù)轉(zhuǎn)型成果
在思愛普可以看到的第一項(xiàng)網(wǎng)絡(luò)效益,,可能會證明人工智能熱潮的持久力,即企業(yè)向云ERP服務(wù)(基于云計(jì)算技術(shù)的企業(yè)資源規(guī)劃)轉(zhuǎn)型,。阿薩姆表示,,人工智能已經(jīng)助力思愛普將許多ERP客戶從本地部署計(jì)算轉(zhuǎn)變?yōu)榛谠朴?jì)算技術(shù)的計(jì)算,,這意味著對該公司云業(yè)務(wù)的巨大需求,。
他在接受《財(cái)富》雜志采訪時(shí)表示:“人工智能確實(shí)正在改變我們從本地部署計(jì)算到基于云計(jì)算技術(shù)的計(jì)算的最后一批懷疑論者。他們明白我們必須轉(zhuǎn)向云計(jì)算,而且考慮到創(chuàng)新的發(fā)展速度,,本地部署模式行不通,。這一速度太慢,,無法消耗最具生產(chǎn)力優(yōu)勢的系統(tǒng)資源?!?/p>
阿薩姆表示,用于ERP的人工智能系統(tǒng)的快速發(fā)展意味著公司需要不斷更新其內(nèi)部軟件,,而這無法在不花費(fèi)高昂的成本情況下現(xiàn)場完成。瑞銀集團(tuán)(UBS)分析師邁克爾 布里斯特(Michael Briest)在接受《財(cái)富》雜志采訪時(shí)支持這一觀點(diǎn),,認(rèn)為人工智能已成為許多公司ERP軟件“實(shí)現(xiàn)現(xiàn)代化的催化劑”,,思愛普的云ERP業(yè)務(wù)將從中受益。思愛普4月22日發(fā)布的財(cái)報(bào)顯示,,第一季度云收入增長了24%,當(dāng)前云積壓(CCB)增長了27%,,創(chuàng)歷史最快紀(jì)錄,。云積壓的增長數(shù)字代表來年云收入(客戶已簽訂合同),,分析師將其視為衡量潛在需求的指標(biāo),。
新收入機(jī)會
盡管思愛普并不是一家純粹的人工智能公司,但和現(xiàn)在的許多科技公司一樣,,也在增加人工智能服務(wù),,以提高收入,,并防止客戶跳槽到競爭對手那里,。作為業(yè)務(wù)重組的一部分,思愛普首席執(zhí)行官克里斯蒂安·克萊因今年1月宣布,,公司將向商業(yè)人工智能部門投資11億美元,,并為客戶提供更多人工智能解決方案,。
該公司目前提供一系列人工智能產(chǎn)品,,可以幫助完成從任務(wù)自動化到跟蹤銷售業(yè)績,、客戶洞察等各個方面的工作,。阿薩姆表示,思愛普的人工智能產(chǎn)品還將幫助不同的業(yè)務(wù)部門(例如會計(jì)和人力資源部門)更好地進(jìn)行溝通,,以消除招聘,、在職人員工薪名冊或員工退休等操作中的失誤。“例如,,如果一名員工離開公司,,你必須確保自動刪除其在財(cái)務(wù)系統(tǒng)中的所有訪問權(quán)限,,否則就會出現(xiàn)控制故障,,審計(jì)員就會過來說,‘那家伙可能篡改了數(shù)據(jù),?!彼忉屨f,,并認(rèn)為人工智能將有助于防止這些問題的發(fā)生。思愛普甚至提供了一款名為Joule的“人工智能副駕”,,將幫助梳理和解釋各種應(yīng)用程序中的數(shù)據(jù),。
阿薩姆認(rèn)為思愛普的客戶(以供參考,思愛普的客戶創(chuàng)造了全球商業(yè)總額的87%)需要大量數(shù)據(jù)才能有效訓(xùn)練人工智能模型,,而只有少數(shù)幾家關(guān)鍵公司可以提供這些數(shù)據(jù),。首席財(cái)務(wù)官表示,思愛普已獲得"絕大部分"客戶的同意,,可以使用他們的數(shù)據(jù)來訓(xùn)練人工智能模型,這為他們在軟件中提供人工智能服務(wù)提供了巨大機(jī)會,。
盡管如此,,思愛普還未將其人工智能收入單獨(dú)劃分為一個類別,,而且該公司目前的人工智能產(chǎn)品在短期內(nèi)可能不會對營收做出顯著貢獻(xiàn)。瑞銀集團(tuán)的布里斯特認(rèn)為,,商業(yè)人工智能部門是“真正的機(jī)會”所在,,但可能只是在短期內(nèi)帶來“增量”收入增長,。
他說:“如今,在我看來,,這更多的是為了推動云遷移。當(dāng)然,,這也有助于客戶決定推進(jìn)現(xiàn)代化進(jìn)程,。但這是一個獨(dú)立的收入項(xiàng)目嗎?讓我們拭目以待,。我認(rèn)為還需要更多的證據(jù),?!?/p>
不過,從長遠(yuǎn)來看,,阿薩姆看好人工智能提升思愛普業(yè)績的潛力。他說:“我們正在開發(fā)這些(人工智能)流程,,目前有大約30個用例,,另外100個用例將在今年年底開發(fā)出來,,推向一般市場,。隨著時(shí)間的推移,,我們會加快步伐,。因此,,還需要一段時(shí)間,你才能真正發(fā)現(xiàn)轉(zhuǎn)變,。但當(dāng)發(fā)生轉(zhuǎn)變時(shí),,就會非常顯著,?!?/p>
提高生產(chǎn)率和利潤率
思愛普也在內(nèi)部實(shí)施人工智能,,以節(jié)省成本和提高員工生產(chǎn)率,并在宣布重組后,,逐步加大人工智能實(shí)施力度。阿薩姆表示,,最終目標(biāo)是在未來幾年利用人工智能實(shí)現(xiàn)“成本增長與收入增長脫鉤”,,并在不大幅增加員工人數(shù)的情況下提高生產(chǎn)率。他對《財(cái)富》雜志表示:“坦率地講,,在某些領(lǐng)域,,我們正在用機(jī)器處理能力取代人類處理能力,。如果通脹率沒有每年大幅上升,,機(jī)器處理能力實(shí)際上更具可擴(kuò)展性?!?/p>
以差旅及費(fèi)用管理服務(wù)SAP Concur為例,,思愛普已經(jīng)部署了一個人工智能系統(tǒng)來響應(yīng)費(fèi)用請求。阿薩姆解釋說:“該引擎基本上是在復(fù)制或取代以前(由人類)完成的工作,,即一些人負(fù)責(zé)檢查違反規(guī)定的差旅和費(fèi)用報(bào)銷,?!?/p>
目前,員工成本占思愛普成本基礎(chǔ)的69%,,因此人工智能降低相關(guān)成本可能會帶來益處,。思愛普首席執(zhí)行官克里斯蒂安·克萊因在公司季度財(cái)報(bào)電話會議上也強(qiáng)調(diào)了多個利用人工智能在內(nèi)部節(jié)省“數(shù)億美元”成本的機(jī)會,。
瑞銀集團(tuán)的布里斯特指出,,人工智能降低勞動力成本的能力最終可能對整個軟件行業(yè)產(chǎn)生重要影響,。他說:"縱觀軟件行業(yè),,每天晚上幾乎有一半的收入以工資的形式流失。相對于資本密集型行業(yè)而言,,這一比例相當(dāng)高。很多人才都在這些崗位上工作,,如銷售、開發(fā),、財(cái)務(wù)和會計(jì),因此,,這些崗位都將發(fā)生轉(zhuǎn)變,?!?/p>
對于思愛普而言,布里斯特認(rèn)為,,部分勞動力成本的降低"將帶來利潤增長,,因?yàn)槠洚a(chǎn)品粘性很高",這意味著客戶不太可能因?yàn)橄嚓P(guān)成本而轉(zhuǎn)向競爭對手,。
人工智能給收益真正帶來影響尚待時(shí)日
思愛普近期的表現(xiàn)和未來計(jì)劃證明,,人工智能可以增加企業(yè)收入,、降低成本和提高生產(chǎn)率,但這項(xiàng)技術(shù)的真正拐點(diǎn)可能尚未到來,。對于思愛普而言,,瑞銀集團(tuán)的布里斯特警告稱,隨著人工智能收入的增長,,“競爭對手不會停滯不前”,。他說:“如今出現(xiàn)一波創(chuàng)新潮,初創(chuàng)公司會被高盈利能力所吸引,。隨著時(shí)間的推移,很多產(chǎn)品因競爭過于激烈而逐漸被其他更具競爭力的產(chǎn)品所取代?!?/p>
不過,布里斯特表示,,盡管這對思愛普來說可能不是好消息,但"可能對全球經(jīng)濟(jì)有利",。畢竟,,競爭激烈通常會帶來創(chuàng)新、降低成本和提高生產(chǎn)率,。
此外,,雖然已經(jīng)有證據(jù)表明人工智能對思愛普的業(yè)務(wù)產(chǎn)生了直接和間接的積極影響,但就連阿薩姆也對《財(cái)富》雜志表示,,人工智能還需要更多的時(shí)間才能像許多急切的投資者所期待的那樣提高收益數(shù)字。以思愛普的規(guī)模而言,,即使人工智能能夠節(jié)省數(shù)億美元的成本或帶來數(shù)億美元的收入增長,,也只能對其利潤產(chǎn)生微小的影響。
他預(yù)計(jì),像許多革命一樣,,人工智能的影響在一段時(shí)間內(nèi)不會太明顯,但很快就會完全顯現(xiàn)出來,。他說:“事情實(shí)際上正在發(fā)生比人們想象的大得多的變化?!?/p>
阿薩姆將人工智能的興起與互聯(lián)網(wǎng)泡沫相提并論,,當(dāng)時(shí)投資者對互聯(lián)網(wǎng)的熱情促使一些無利可圖的科技股瘋狂飆升,,然后出現(xiàn)崩盤,但最終互聯(lián)網(wǎng)還是帶來了收益,。阿薩姆說:“如今,這一生態(tài)系統(tǒng)的價(jià)值是當(dāng)時(shí)人們認(rèn)為的數(shù)倍,。所以我認(rèn)為這(人工智能)將遵循類似的模式。這就是為什么思愛普全力押注人工智能,?!保ㄘ?cái)富中文網(wǎng))
譯者:中慧言-王芳
在投資界有一種常見的說法,那就是在淘金熱期間真正賺到錢的人并不是礦工,,而是那些向礦工出售開采所需的鎬頭和鐵鍬的企業(yè)家,。講述這個故事的投資者通常會提到加州第一位百萬富翁的故事,他是一位名叫塞繆爾·布蘭南(Samuel Brannan)的商人和報(bào)紙出版商,,在19世紀(jì)40年代和50年代以高價(jià)向淘金者出售設(shè)備和物資,,賺取了大部分財(cái)富。有些人甚至?xí)岬嚼罹S·斯特勞斯(Levi Strauss),這位德國出生的商人將精美商品進(jìn)口到舊金山,,當(dāng)然也包括藍(lán)色牛仔褲。施特勞斯從未在采礦上花費(fèi)一分一秒時(shí)間,,但他確實(shí)從那個時(shí)代的淘金熱中獲得了豐厚的利潤,。
這種“鎬頭和鐵鍬”的說法無疑是有道理的,,在當(dāng)今更關(guān)注科技的“淘金熱”時(shí)代,,投資者的決策仍受這種說法的影響,,但這也只是故事的一部分,。雖然第一批從淘金熱中獲利的是少數(shù)幸運(yùn)的礦工和那些向他們出售物資和設(shè)備的人,但那個時(shí)代繁榮所產(chǎn)生的全面影響波及范圍廣,,利潤在全球范圍內(nèi)分配,。淘金熱為第一條橫貫大陸的鐵路提供了資金,帶動加州農(nóng)業(yè)(“綠色黃金”)實(shí)現(xiàn)繁榮,,加速工業(yè)化進(jìn)程,,增加國際貿(mào)易,,并催生運(yùn)輸和通信創(chuàng)新,。
關(guān)鍵在于:對于投資者和全球經(jīng)濟(jì)而言,革命性發(fā)現(xiàn)或創(chuàng)新都是千載難逢的機(jī)遇,,其真正的標(biāo)志往往是長期網(wǎng)絡(luò)效應(yīng),;在鎬頭和鐵鍬賣家已經(jīng)賺到錢之后產(chǎn)生的積極的二級和三級影響。18世紀(jì)的運(yùn)河繁榮時(shí)期,、以及90年代末和21世紀(jì)初的互聯(lián)網(wǎng)時(shí)代,都是如此,。
隨著這十年的人工智能熱潮與淘金熱的相提并論,,投資者多年來一直在尋找這些網(wǎng)絡(luò)效應(yīng)的證據(jù),,試圖將炒作與現(xiàn)實(shí)區(qū)分開來,。許多相當(dāng)重要的研究和預(yù)測都表示,,人工智能可以提高生產(chǎn)率,迎來創(chuàng)新時(shí)代,,甚至可以長期增加國內(nèi)生產(chǎn)總值,但到目前為止,,只有少數(shù)幾家公司真正從人工智能熱潮中獲利。
英偉達(dá)(Nvidia)和阿斯麥(ASML)等科技巨頭出售人工智能革命的“鎬頭和鐵鍬”,,即人工智能得以運(yùn)行的底層技術(shù),,它們的表現(xiàn)持續(xù)優(yōu)于其他公司,,而且似乎有望持續(xù)這一勢頭。但在這些巨頭之外,,關(guān)于人工智能提高生產(chǎn)率和促進(jìn)經(jīng)濟(jì)發(fā)展的實(shí)際證據(jù)卻更為微妙,。
然而,,思愛普可能是人工智能影響日益突出的一個例子。這家總部位于德國沃爾多夫的科技巨頭擁有約10.8萬名員工,,市值達(dá)2250億美元,是全球領(lǐng)先的企業(yè)資源規(guī)劃(以下簡稱ERP)軟件供應(yīng)商,,主要為大型企業(yè)提供后臺辦公引擎。
思愛普的ERP軟件正日益轉(zhuǎn)向云計(jì)算,,有助于供應(yīng)鏈管理、會計(jì),、人力資源、支出和許多其他業(yè)務(wù)運(yùn)營,。今年1月,思愛普的主要投資者紅杉基金(Sequoia Fund)的投資顧問和分銷商Ruane Cunniff LP在致股東的年度信中解釋說,,“對于在物理世界制造或移動產(chǎn)品的跨國企業(yè)來說,思愛普幾乎是不二之選,。”
盡管思愛普不是一家人工智能公司,,也不出售支持人工智能的鎬頭和鐵鍬,但卻間接和直接地從這項(xiàng)技術(shù)的興起中受益,。思愛普首席財(cái)務(wù)官多米尼克·阿薩姆(Dominik Asam)在接受《財(cái)富》雜志采訪時(shí)解釋說,人工智能的繁榮有助于推動公司實(shí)現(xiàn)增長,,并表示他將致力于利用這項(xiàng)技術(shù)提高生產(chǎn)率,削減公司內(nèi)部成本。
在談到人工智能的炒作與現(xiàn)實(shí)問題時(shí),,阿薩姆也表示看好人工智能的前景,。他在接受《財(cái)富》雜志采訪時(shí)表示:"這不是曇花一現(xiàn),,也不是炒作,而是科技行業(yè)最大的顛覆性技術(shù)之一,。”
思愛普案例研究:人工智能的增量收益和潛在隱患
鞏固云業(yè)務(wù)轉(zhuǎn)型成果
在思愛普可以看到的第一項(xiàng)網(wǎng)絡(luò)效益,,可能會證明人工智能熱潮的持久力,,即企業(yè)向云ERP服務(wù)(基于云計(jì)算技術(shù)的企業(yè)資源規(guī)劃)轉(zhuǎn)型,。阿薩姆表示,人工智能已經(jīng)助力思愛普將許多ERP客戶從本地部署計(jì)算轉(zhuǎn)變?yōu)榛谠朴?jì)算技術(shù)的計(jì)算,,這意味著對該公司云業(yè)務(wù)的巨大需求。
他在接受《財(cái)富》雜志采訪時(shí)表示:“人工智能確實(shí)正在改變我們從本地部署計(jì)算到基于云計(jì)算技術(shù)的計(jì)算的最后一批懷疑論者,。他們明白我們必須轉(zhuǎn)向云計(jì)算,,而且考慮到創(chuàng)新的發(fā)展速度,,本地部署模式行不通。這一速度太慢,,無法消耗最具生產(chǎn)力優(yōu)勢的系統(tǒng)資源?!?/p>
阿薩姆表示,用于ERP的人工智能系統(tǒng)的快速發(fā)展意味著公司需要不斷更新其內(nèi)部軟件,,而這無法在不花費(fèi)高昂的成本情況下現(xiàn)場完成。瑞銀集團(tuán)(UBS)分析師邁克爾 布里斯特(Michael Briest)在接受《財(cái)富》雜志采訪時(shí)支持這一觀點(diǎn),,認(rèn)為人工智能已成為許多公司ERP軟件“實(shí)現(xiàn)現(xiàn)代化的催化劑”,,思愛普的云ERP業(yè)務(wù)將從中受益。思愛普4月22日發(fā)布的財(cái)報(bào)顯示,,第一季度云收入增長了24%,,當(dāng)前云積壓(CCB)增長了27%,,創(chuàng)歷史最快紀(jì)錄。云積壓的增長數(shù)字代表來年云收入(客戶已簽訂合同),,分析師將其視為衡量潛在需求的指標(biāo)。
新收入機(jī)會
盡管思愛普并不是一家純粹的人工智能公司,,但和現(xiàn)在的許多科技公司一樣,也在增加人工智能服務(wù),,以提高收入,并防止客戶跳槽到競爭對手那里,。作為業(yè)務(wù)重組的一部分,思愛普首席執(zhí)行官克里斯蒂安·克萊因今年1月宣布,,公司將向商業(yè)人工智能部門投資11億美元,并為客戶提供更多人工智能解決方案,。
該公司目前提供一系列人工智能產(chǎn)品,可以幫助完成從任務(wù)自動化到跟蹤銷售業(yè)績,、客戶洞察等各個方面的工作。阿薩姆表示,,思愛普的人工智能產(chǎn)品還將幫助不同的業(yè)務(wù)部門(例如會計(jì)和人力資源部門)更好地進(jìn)行溝通,以消除招聘,、在職人員工薪名冊或員工退休等操作中的失誤?!袄纾绻幻麊T工離開公司,,你必須確保自動刪除其在財(cái)務(wù)系統(tǒng)中的所有訪問權(quán)限,否則就會出現(xiàn)控制故障,,審計(jì)員就會過來說,,‘那家伙可能篡改了數(shù)據(jù),。’”他解釋說,,并認(rèn)為人工智能將有助于防止這些問題的發(fā)生。思愛普甚至提供了一款名為Joule的“人工智能副駕”,,將幫助梳理和解釋各種應(yīng)用程序中的數(shù)據(jù)。
阿薩姆認(rèn)為思愛普的客戶(以供參考,,思愛普的客戶創(chuàng)造了全球商業(yè)總額的87%)需要大量數(shù)據(jù)才能有效訓(xùn)練人工智能模型,,而只有少數(shù)幾家關(guān)鍵公司可以提供這些數(shù)據(jù)。首席財(cái)務(wù)官表示,,思愛普已獲得"絕大部分"客戶的同意,可以使用他們的數(shù)據(jù)來訓(xùn)練人工智能模型,,這為他們在軟件中提供人工智能服務(wù)提供了巨大機(jī)會,。
盡管如此,,思愛普還未將其人工智能收入單獨(dú)劃分為一個類別,而且該公司目前的人工智能產(chǎn)品在短期內(nèi)可能不會對營收做出顯著貢獻(xiàn),。瑞銀集團(tuán)的布里斯特認(rèn)為,商業(yè)人工智能部門是“真正的機(jī)會”所在,,但可能只是在短期內(nèi)帶來“增量”收入增長,。
他說:“如今,,在我看來,這更多的是為了推動云遷移,。當(dāng)然,,這也有助于客戶決定推進(jìn)現(xiàn)代化進(jìn)程,。但這是一個獨(dú)立的收入項(xiàng)目嗎?讓我們拭目以待,。我認(rèn)為還需要更多的證據(jù),?!?/p>
不過,從長遠(yuǎn)來看,,阿薩姆看好人工智能提升思愛普業(yè)績的潛力。他說:“我們正在開發(fā)這些(人工智能)流程,,目前有大約30個用例,另外100個用例將在今年年底開發(fā)出來,,推向一般市場,。隨著時(shí)間的推移,,我們會加快步伐。因此,,還需要一段時(shí)間,你才能真正發(fā)現(xiàn)轉(zhuǎn)變,。但當(dāng)發(fā)生轉(zhuǎn)變時(shí),就會非常顯著,?!?/p>
提高生產(chǎn)率和利潤率
思愛普也在內(nèi)部實(shí)施人工智能,以節(jié)省成本和提高員工生產(chǎn)率,,并在宣布重組后,逐步加大人工智能實(shí)施力度,。阿薩姆表示,,最終目標(biāo)是在未來幾年利用人工智能實(shí)現(xiàn)“成本增長與收入增長脫鉤”,,并在不大幅增加員工人數(shù)的情況下提高生產(chǎn)率。他對《財(cái)富》雜志表示:“坦率地講,,在某些領(lǐng)域,我們正在用機(jī)器處理能力取代人類處理能力。如果通脹率沒有每年大幅上升,,機(jī)器處理能力實(shí)際上更具可擴(kuò)展性?!?/p>
以差旅及費(fèi)用管理服務(wù)SAP Concur為例,思愛普已經(jīng)部署了一個人工智能系統(tǒng)來響應(yīng)費(fèi)用請求,。阿薩姆解釋說:“該引擎基本上是在復(fù)制或取代以前(由人類)完成的工作,即一些人負(fù)責(zé)檢查違反規(guī)定的差旅和費(fèi)用報(bào)銷,。”
目前,,員工成本占思愛普成本基礎(chǔ)的69%,因此人工智能降低相關(guān)成本可能會帶來益處,。思愛普首席執(zhí)行官克里斯蒂安·克萊因在公司季度財(cái)報(bào)電話會議上也強(qiáng)調(diào)了多個利用人工智能在內(nèi)部節(jié)省“數(shù)億美元”成本的機(jī)會。
瑞銀集團(tuán)的布里斯特指出,,人工智能降低勞動力成本的能力最終可能對整個軟件行業(yè)產(chǎn)生重要影響。他說:"縱觀軟件行業(yè),,每天晚上幾乎有一半的收入以工資的形式流失。相對于資本密集型行業(yè)而言,,這一比例相當(dāng)高。很多人才都在這些崗位上工作,,如銷售、開發(fā),、財(cái)務(wù)和會計(jì),因此,,這些崗位都將發(fā)生轉(zhuǎn)變?!?/p>
對于思愛普而言,,布里斯特認(rèn)為,,部分勞動力成本的降低"將帶來利潤增長,因?yàn)槠洚a(chǎn)品粘性很高",,這意味著客戶不太可能因?yàn)橄嚓P(guān)成本而轉(zhuǎn)向競爭對手。
人工智能給收益真正帶來影響尚待時(shí)日
思愛普近期的表現(xiàn)和未來計(jì)劃證明,,人工智能可以增加企業(yè)收入,、降低成本和提高生產(chǎn)率,,但這項(xiàng)技術(shù)的真正拐點(diǎn)可能尚未到來。對于思愛普而言,,瑞銀集團(tuán)的布里斯特警告稱,,隨著人工智能收入的增長,,“競爭對手不會停滯不前”。他說:“如今出現(xiàn)一波創(chuàng)新潮,,初創(chuàng)公司會被高盈利能力所吸引,。隨著時(shí)間的推移,很多產(chǎn)品因競爭過于激烈而逐漸被其他更具競爭力的產(chǎn)品所取代,?!?/p>
不過,布里斯特表示,,盡管這對思愛普來說可能不是好消息,,但"可能對全球經(jīng)濟(jì)有利"。畢竟,,競爭激烈通常會帶來創(chuàng)新、降低成本和提高生產(chǎn)率,。
此外,,雖然已經(jīng)有證據(jù)表明人工智能對思愛普的業(yè)務(wù)產(chǎn)生了直接和間接的積極影響,,但就連阿薩姆也對《財(cái)富》雜志表示,人工智能還需要更多的時(shí)間才能像許多急切的投資者所期待的那樣提高收益數(shù)字,。以思愛普的規(guī)模而言,即使人工智能能夠節(jié)省數(shù)億美元的成本或帶來數(shù)億美元的收入增長,,也只能對其利潤產(chǎn)生微小的影響。
他預(yù)計(jì),,像許多革命一樣,,人工智能的影響在一段時(shí)間內(nèi)不會太明顯,但很快就會完全顯現(xiàn)出來,。他說:“事情實(shí)際上正在發(fā)生比人們想象的大得多的變化,?!?/p>
阿薩姆將人工智能的興起與互聯(lián)網(wǎng)泡沫相提并論,當(dāng)時(shí)投資者對互聯(lián)網(wǎng)的熱情促使一些無利可圖的科技股瘋狂飆升,,然后出現(xiàn)崩盤,但最終互聯(lián)網(wǎng)還是帶來了收益,。阿薩姆說:“如今,,這一生態(tài)系統(tǒng)的價(jià)值是當(dāng)時(shí)人們認(rèn)為的數(shù)倍,。所以我認(rèn)為這(人工智能)將遵循類似的模式。這就是為什么思愛普全力押注人工智能,。”(財(cái)富中文網(wǎng))
譯者:中慧言-王芳
There’s a common narrative in the investment community that says the people who really made money during the gold rush weren’t the miners—but the entrepreneurs who sold miners the picks and shovels they needed to prospect. Investors who recount this tale often point to the story of California’s first millionaire, a businessman and newspaper publisher named Samuel Brannan, who made the bulk of his fortune selling equipment and provisions to gold miners at a premium in the 1840s and ‘50s. Some will even bring up Levi Strauss, the German-born businessman who imported fine goods into San Francisco—including, of course, blue jeans. Strauss never spent a minute mining, but was certainly rewarded by the profits that came with the gold fever of his era.
This ‘picks and shovels’ narrative undoubtedly has merit, and continues to inform investors’ decisions during modern day, more tech-focused ‘gold rushes’—but it’s also only part of the story. Although the first to profit from the gold rush were a few lucky miners and those who sold them provisions and equipment, the full impact of the boom of that era was widespread, and the profits were distributed globally. The gold rush helped finance the first transcontinental railroad, led to a “green gold” farming boom in California, accelerated industrialization, increased international trade, and spawned transportation and communication innovations.
The point is this: the true mark of a revolutionary discovery or innovation—a once-in-a-lifetime opportunity for investors and the global economy—is often its long-term network effects; positive secondary and tertiary impacts that come after the pick and shovel sellers have already made their money. This was true in the canal boom of the 18th century, and during the dot-com era of the late ‘90s and early 2000s.
With this decade’s artificial-intelligence boom drawing comparisons with the gold rush, investors have been looking for evidence of these network effects for years as they try to separate hype from reality. Plenty of respectable studies and forecasts predict that AI can boost productivity, usher in an age of innovation, and even increase GDP over the long-term—but so far, only a few companies have really profited from the AI boom.
Tech giants like Nvidia and ASML that sell the picks and shovels of the AI revolution, the underlying technology that allows AI to operate, continue to outperform and seem on track to continue doing so. But on-the-ground evidence of AI’s supposed productivity-enhancing and economy-boosting impacts outside of these giants has been more subtle.
SAP SE could be one example of AI’s growing prominence, however. The Walldorff, Germany-based tech giant, which has roughly 108,000 employees and a market cap of $225 billion, is the world’s leading provider of enterprise resource planning (ERP) software, essentially providing the back office engine for large businesses.
SAP’s ERP software, which is increasingly moving to the cloud, helps with supply chain management, accounting, human resources, expenses, and a number of other business operations. And as Ruane Cunniff LP, the investment advisor and distributor of Sequoia Fund, a major investor in SAP, explained in its annual letter to shareholders in January, “for multinational enterprises that make or move something in the physical world, SAP is just about the only game in town.”
Although SAP isn’t an AI company, and they aren’t selling picks and shovels that enable AI, they are benefiting from the rise of the technology, both indirectly and directly. In an interview with Fortune, SAP CFO’s Dominik Asam explained that the AI boom has helped drive growth at his company, and said he’s dedicated to using the technology to enhance productivity and cut costs in-house moving forward.
When it comes to the questions over hype versus reality when it comes to AI, Asam is bullish too. “This is not like a blip or hype, but really one of the biggest, if not the biggest disruption in the technology industry,” he told Fortune.
An SAP case study: The incremental gains and potential pitfalls of AI
Cementing the cloud transition
The first network benefit that can be seen at SAP which may provide evidence of the staying power of the AI boom is corporations’ transition to the cloud for ERP services. Asam said that AI has helped SAP transition many of its ERP customers from on-premises computing to cloud-based computing, which means considerable demand for the company’s cloud business.
“AI is really converting the last skeptics we had from the journey from on-[premises] to cloud,” he told Fortune. “They understand we have to go to the cloud, they know that the on-prem model doesn’t work, given the velocity of innovation. They will be too slow, they will not be able to consume the most productive systems.”
The rapid pace of advancement in AI systems for ERP means companies need to be able to continually update their internal software, and that can’t be done on-site without serious costs, Asam said. In an interview with Fortune, UBS analyst Michael Briest backed up the idea that AI has been a “catalyst for the modernization” of many companies’ ERP software, benefitting SAP’s cloud ERP business. And SAP’s April 22 earnings report showed cloud revenue growth of 24% in the first quarter, and current cloud backlog (CCB) growth of 27%, the fastest on record. The CCB growth figure represents cloud revenue for the upcoming year for which clients have already signed contracts, and it is seen as a measure of underlying demand by analysts.
New revenue opportunities
Although SAP isn’t a pure AI play, like many tech companies these days it’s added AI services to bolster revenues and keep customers from jumping to the competition. CEO Christian Klein announced SAP would invest $1.1 billion on its Business AI unit in January as a part of a business restructuring and offer more AI solutions for customers.
The company now provides a range of AI products that can help with everything from the automation of tasks to tracking sales performance, customer insights, and more. SAP’s AI offerings will also help different lines of business—accounting and human resources, for example—better communicate to eliminate errors in operations like hiring, payroll, or employee retirements, according to Asam. “For instance, if an employee is leaving the company, you have to ensure that all access rights in the finance systems are automatically deleted, because otherwise you have a control failure and the auditor will come and say, ‘That guy could have manipulated the data,’” he explained, arguing AI will help prevent these issues. SAP even offers an “AI co-pilot” called Joule that will help sort through and explain data across its various applications.
Asam argued that SAP’s customers—which, for reference, generate 87% of total global commerce—would need huge amounts of data in order to train AI models properly, and only a few key firms can provide that. But SAP has the consent of the “l(fā)ion’s share” of its customers to use their data to train AI models, and that gives them a big opportunity to provide AI services in their software, according to the CFO.
Still, SAP doesn’t yet break out its AI revenues into their own category, and its current AI offerings may not dramatically contribute to the top line in the near-term. UBS’ Briest argued that the Business AI unit is “a genuine opportunity,” but probably only for an “incremental” revenue increase in the near-term.
“In my view today, this is more about pulling along the cloud migration. And of course, it helps customers decide to modernize. But is it a separate revenue item? We’ll see. I think more evidence is required,” he said.
Long-term, however, Asam is bullish about AI’s potential to lift SAP. “We are developing these [AI] processes as we speak. We have about 30 use cases now…another 100 will be developed for general market introduction throughout the end of this year. And overtime, we will ramp that,” he said. “So this will take some time until you will really see it inflect. But when it inflects, it can be very big.”
Productivity gains and margin expansion
SAP is also implementing AI internally in order to save costs and increase worker productivity, and those efforts were ramped up after its restructuring announcement. Asam said the ultimate goal is to use AI to help with “decoupling cost growth from growth in revenues” in coming years, becoming more productive without dramatically increasing employee headcount. “In some areas, we are replacing, frankly, human processing power with machine processing power, which is actually more scalable if you don’t have the kind of significant inflation increase every year,” he told Fortune.
Take the example of the travel and expense management service SAP Concur, where SAP has implemented an AI system that responds to expense requests. “That engine is basically replicating or replacing the work of what formerly has been done [by humans], where some people have been checking the travel and expense claims against the rules,” Asam explained.
Employees currently make up 69% of SAP’s cost base, so a reduction in related costs due to AI could be beneficial. SAP’s CEO Christian Klein also highlighted multiple opportunities for using AI to save “triple digit millions” internally in the firm’s quarterly earnings call.
UBS’ Briest noted that AI’s ability to reduce labor costs could end up being important for the entire software industry as well. “When you look at the software industry, half the revenue pretty much walks out the door in salaries every night. That’s high relative to capital intensive industries as a percentage of revenue. And a lot of the talent is in these roles, sales, development, finance, and accounting, which will be transformed,” he said.
For SAP, Briest argued that some of the labor cost reduction “will accrue to the bottom line because they have a very sticky product”—meaning customers are unlikely to transition to a competitor due to associated costs.
AI’s true impact on earnings is still to come
SAP’s recent performance and future plans provide evidence of AI’s ability to boost corporate revenues, reduce costs, and enhance productivity, but the true inflection point for the technology may still lie ahead. For SAP, UBS’ Briest warned that “competitors won’t stand still” as AI revenues rise. “There’s a wave of innovation, and startups will be attracted to your high profitability,” he said. “A lot of it will get competed away over time.”
But while that may not be great news for SAP, it is “probably good for the global economy,” Briest said. After all, more competition typically brings innovation, lower costs, and improved productivity.
Also, while there is already evidence of both direct and indirect positive impacts on SAP’s business, even Asam told Fortune that it will take more time for AI to boost earnings numbers in the way many eager investors are anticipating. Even when AI is driving hundreds of millions of dollars of savings or revenue growth, it would only amount to a tiny change to SAP’s bottom line, given the company’s size.
He expects AI’s impact, like many revolutions, won’t be felt too dramatically for some time—but then all at once. “Things are actually inflecting to something much bigger than what people ever thought,” he said.
Asam compared the rise of AI to the dot-com bubble, where investor enthusiasm for the internet drove some unprofitable tech stocks to insane heights before a crash, but ultimately the internet delivered the goods. “Today, that ecosystem is worth multiples of what people thought it would be worth back then. So I think this [AI] will follow a similar pattern,” Asam said. “This is why we at SAP are really fully betting on that.”