英偉達(dá)(Nvidia)副總裁西蒙娜·揚(yáng)科夫斯基最近從市值高達(dá)3.1萬(wàn)億美元的科技巨頭離職,,她對(duì)自己的上司和公司CEO黃仁勛表達(dá)了敬意,。
在談到她在這位白手起家的億萬(wàn)富翁手下工作的經(jīng)歷時(shí),她總結(jié)說(shuō):“與黃仁勛共事是讓我終生難忘的一段經(jīng)歷,。”
揚(yáng)科夫斯基在該芯片制造商負(fù)責(zé)投資者關(guān)系和戰(zhàn)略融資已近七年,,她在LinkedIn上表示,黃仁勛“獨(dú)樹一幟”,,然后她分享了從黃仁勛身上學(xué)到的三條領(lǐng)導(dǎo)經(jīng)驗(yàn):“第一性原理思維,、零億美元市場(chǎng)和光速執(zhí)行。”
揚(yáng)科夫斯基補(bǔ)充說(shuō):“他啟發(fā)我要挑戰(zhàn)極限,他會(huì)讓我笑出眼淚,還讓我學(xué)會(huì)了如何平衡工作與家庭,。”
英偉達(dá)成為全球最有價(jià)值的公司,得益于黃仁勛的第一性原理思維和零億美元市場(chǎng)理念
英偉達(dá)最初專注于為電腦游戲開發(fā)圖形處理器,,后來(lái)該公司發(fā)明了首批適用于人工智能的GPU,,如今它已經(jīng)成為市場(chǎng)主導(dǎo)者,,市場(chǎng)上出售的70%以上的人工智能芯片來(lái)自該公司。
上周,英偉達(dá)曾短暫超過微軟(Microsoft),,以3.34萬(wàn)億美元的市值成為全球最有價(jià)值的公司。
揚(yáng)科夫斯基自豪地表示,自從她于2017年加入英偉達(dá)以來(lái),,她親眼見證公司營(yíng)收增長(zhǎng)了10倍,,利潤(rùn)和市值增長(zhǎng)了超過20倍,。
她補(bǔ)充說(shuō):“或許更了不起的是,英偉達(dá)旗艦GPU芯片的智算性能提高了1,000多倍,而尖端人工智能模型的規(guī)模擴(kuò)大了20,000多倍,。經(jīng)歷指數(shù)級(jí)增長(zhǎng)是罕見且令人激動(dòng)的過程,,而且讓我保持陡峭且令人興奮的學(xué)習(xí)曲線?!?/p>
但英偉達(dá)在GPU領(lǐng)域的成功絕非偶然——它清晰地展示了黃仁勛的良好習(xí)慣,,即用第一性原則思維(即質(zhì)疑每一種假設(shè)以找到問題的基本要素)找到創(chuàng)新解決方案而不是模仿現(xiàn)有的模式,并在零億美元市場(chǎng)(即新興但潛力巨大的市場(chǎng))發(fā)展業(yè)務(wù),。
之前,誕生于上世紀(jì)50年代的CPU作為最常用的計(jì)算機(jī)芯片,,擅長(zhǎng)逐個(gè)執(zhí)行復(fù)雜的計(jì)算,,但到了2010年代,,隨著深度學(xué)習(xí)和人工智能研究的增多,,CPU已經(jīng)無(wú)法滿足數(shù)據(jù)科學(xué)家們的需求,。
而GPU可以一次處理多個(gè)簡(jiǎn)單的計(jì)算,,且事實(shí)證明,對(duì)于人工智能開發(fā)者創(chuàng)建和訓(xùn)練大語(yǔ)言模型所需要的計(jì)算系統(tǒng),,英偉達(dá)的GPU是最佳選擇。
半導(dǎo)體資深研究分析師特里斯坦·杰拉對(duì)《財(cái)富》雜志表示:“黃仁勛富有遠(yuǎn)見,,他很早就預(yù)見到GPU在數(shù)據(jù)中心的應(yīng)用趨勢(shì),,并根據(jù)這個(gè)愿景調(diào)整了公司的策略?!?/p>
英偉達(dá)富有遠(yuǎn)見的舉措之一是,,在2007年開發(fā)出一款高性能編程工具CUDA,,可以簡(jiǎn)單的方式發(fā)揮其GPU的全部能力,。
CUDA目前應(yīng)用廣泛,,以至于開發(fā)大語(yǔ)言模型的公司,,例如OpenAI的ChatGPT等,,很難考慮使用其他技術(shù)。
正如黃仁勛之前所說(shuō)的那樣,,這就是在零億美元市場(chǎng)運(yùn)營(yíng)的意義所在,。
上個(gè)月,他在接受Stripe的CEO帕特里克·克里森采訪時(shí)表示:“我們的使命是去做沒有人做過的事情,這些事情可能困難重重,,但只要你能做到,,就能做出真正的貢獻(xiàn),。
這個(gè)市場(chǎng)在規(guī)模上可能是一個(gè)零億美元市場(chǎng),因?yàn)橐郧斑@個(gè)市場(chǎng)并不存在,,我寧愿成為市場(chǎng)創(chuàng)造者,,而不是市場(chǎng)接受者?!?/p>
西蒙娜·揚(yáng)科夫斯基是誰(shuí),?
揚(yáng)科夫斯基畢業(yè)于斯坦福大學(xué)(Stanford University),,在加入英偉達(dá)之前,一直任職于高盛(Goldman Sachs),。
但她透露,,早在高盛工作期間,,她與該芯片制造商之間就已經(jīng)有非常密切的合作,。
她在LinkedIn上發(fā)帖解釋稱:“在2001年,作為高盛一名新手股權(quán)研究分析師,,我的第一個(gè)任務(wù)就是創(chuàng)建NVDA財(cái)務(wù)模型,。在我們的初期研究過程中,我接觸到了黃仁勛,?!?/p>
她說(shuō)道,,她跟進(jìn)了英偉達(dá)“炫酷的產(chǎn)品發(fā)布、飛快的技術(shù)進(jìn)步,、前往中國(guó)臺(tái)灣的供應(yīng)鏈考察”以及“對(duì)黃仁勛的問答”,,這讓她在分析師圈打響了自己的名號(hào),。
揚(yáng)科夫斯基從基層做起,,在高盛全球投資研究部門從事了多年半導(dǎo)體行業(yè)研究,,后被提拔為總經(jīng)理。
現(xiàn)在,,她將加入一家初創(chuàng)公司擔(dān)任首席財(cái)務(wù)官,,但她并未透露這家公司的具體信息。
《財(cái)富》雜志已向揚(yáng)科夫斯基提出了置評(píng)請(qǐng)求,。(財(cái)富中文網(wǎng))
翻譯:劉進(jìn)龍
審校:汪皓
英偉達(dá)(Nvidia)副總裁西蒙娜·揚(yáng)科夫斯基最近從市值高達(dá)3.1萬(wàn)億美元的科技巨頭離職,她對(duì)自己的上司和公司CEO黃仁勛表達(dá)了敬意,。
在談到她在這位白手起家的億萬(wàn)富翁手下工作的經(jīng)歷時(shí),,她總結(jié)說(shuō):“與黃仁勛共事是讓我終生難忘的一段經(jīng)歷?!?
揚(yáng)科夫斯基在該芯片制造商負(fù)責(zé)投資者關(guān)系和戰(zhàn)略融資已近七年,,她在LinkedIn上表示,黃仁勛“獨(dú)樹一幟”,,然后她分享了從黃仁勛身上學(xué)到的三條領(lǐng)導(dǎo)經(jīng)驗(yàn):“第一性原理思維,、零億美元市場(chǎng)和光速執(zhí)行?!?
揚(yáng)科夫斯基補(bǔ)充說(shuō):“他啟發(fā)我要挑戰(zhàn)極限,,他會(huì)讓我笑出眼淚,還讓我學(xué)會(huì)了如何平衡工作與家庭,?!?/p>
英偉達(dá)成為全球最有價(jià)值的公司,得益于黃仁勛的第一性原理思維和零億美元市場(chǎng)理念
英偉達(dá)最初專注于為電腦游戲開發(fā)圖形處理器,,后來(lái)該公司發(fā)明了首批適用于人工智能的GPU,,如今它已經(jīng)成為市場(chǎng)主導(dǎo)者,市場(chǎng)上出售的70%以上的人工智能芯片來(lái)自該公司,。
上周,,英偉達(dá)曾短暫超過微軟(Microsoft),以3.34萬(wàn)億美元的市值成為全球最有價(jià)值的公司,。
揚(yáng)科夫斯基自豪地表示,,自從她于2017年加入英偉達(dá)以來(lái),她親眼見證公司營(yíng)收增長(zhǎng)了10倍,,利潤(rùn)和市值增長(zhǎng)了超過20倍,。
她補(bǔ)充說(shuō):“或許更了不起的是,,英偉達(dá)旗艦GPU芯片的智算性能提高了1,000多倍,而尖端人工智能模型的規(guī)模擴(kuò)大了20,000多倍,。經(jīng)歷指數(shù)級(jí)增長(zhǎng)是罕見且令人激動(dòng)的過程,,而且讓我保持陡峭且令人興奮的學(xué)習(xí)曲線?!?/p>
但英偉達(dá)在GPU領(lǐng)域的成功絕非偶然——它清晰地展示了黃仁勛的良好習(xí)慣,,即用第一性原則思維(即質(zhì)疑每一種假設(shè)以找到問題的基本要素)找到創(chuàng)新解決方案而不是模仿現(xiàn)有的模式,并在零億美元市場(chǎng)(即新興但潛力巨大的市場(chǎng))發(fā)展業(yè)務(wù),。
之前,,誕生于上世紀(jì)50年代的CPU作為最常用的計(jì)算機(jī)芯片,擅長(zhǎng)逐個(gè)執(zhí)行復(fù)雜的計(jì)算,,但到了2010年代,,隨著深度學(xué)習(xí)和人工智能研究的增多,CPU已經(jīng)無(wú)法滿足數(shù)據(jù)科學(xué)家們的需求,。
而GPU可以一次處理多個(gè)簡(jiǎn)單的計(jì)算,,且事實(shí)證明,對(duì)于人工智能開發(fā)者創(chuàng)建和訓(xùn)練大語(yǔ)言模型所需要的計(jì)算系統(tǒng),,英偉達(dá)的GPU是最佳選擇,。
半導(dǎo)體資深研究分析師特里斯坦·杰拉對(duì)《財(cái)富》雜志表示:“黃仁勛富有遠(yuǎn)見,他很早就預(yù)見到GPU在數(shù)據(jù)中心的應(yīng)用趨勢(shì),,并根據(jù)這個(gè)愿景調(diào)整了公司的策略,。”
英偉達(dá)富有遠(yuǎn)見的舉措之一是,,在2007年開發(fā)出一款高性能編程工具CUDA,,可以簡(jiǎn)單的方式發(fā)揮其GPU的全部能力。
CUDA目前應(yīng)用廣泛,,以至于開發(fā)大語(yǔ)言模型的公司,,例如OpenAI的ChatGPT等,很難考慮使用其他技術(shù),。
正如黃仁勛之前所說(shuō)的那樣,,這就是在零億美元市場(chǎng)運(yùn)營(yíng)的意義所在。
上個(gè)月,,他在接受Stripe的CEO帕特里克·克里森采訪時(shí)表示:“我們的使命是去做沒有人做過的事情,,這些事情可能困難重重,但只要你能做到,,就能做出真正的貢獻(xiàn),。
這個(gè)市場(chǎng)在規(guī)模上可能是一個(gè)零億美元市場(chǎng),因?yàn)橐郧斑@個(gè)市場(chǎng)并不存在,我寧愿成為市場(chǎng)創(chuàng)造者,,而不是市場(chǎng)接受者,。”
西蒙娜·揚(yáng)科夫斯基是誰(shuí),?
揚(yáng)科夫斯基畢業(yè)于斯坦福大學(xué)(Stanford University),,在加入英偉達(dá)之前,一直任職于高盛(Goldman Sachs),。
但她透露,,早在高盛工作期間,她與該芯片制造商之間就已經(jīng)有非常密切的合作,。
她在LinkedIn上發(fā)帖解釋稱:“在2001年,,作為高盛一名新手股權(quán)研究分析師,我的第一個(gè)任務(wù)就是創(chuàng)建NVDA財(cái)務(wù)模型,。在我們的初期研究過程中,,我接觸到了黃仁勛?!?/p>
她說(shuō)道,,她跟進(jìn)了英偉達(dá)“炫酷的產(chǎn)品發(fā)布、飛快的技術(shù)進(jìn)步,、前往中國(guó)臺(tái)灣的供應(yīng)鏈考察”以及“對(duì)黃仁勛的問答”,,這讓她在分析師圈打響了自己的名號(hào),。
揚(yáng)科夫斯基從基層做起,,在高盛全球投資研究部門從事了多年半導(dǎo)體行業(yè)研究,后被提拔為總經(jīng)理,。
現(xiàn)在,,她將加入一家初創(chuàng)公司擔(dān)任首席財(cái)務(wù)官,但她并未透露這家公司的具體信息,。
《財(cái)富》雜志已向揚(yáng)科夫斯基提出了置評(píng)請(qǐng)求,。(財(cái)富中文網(wǎng))
翻譯:劉進(jìn)龍
審校:汪皓
Nvidia VP Simona Jankowski has just bid the $3.1 trillion tech giant farewell—and paid homage to her boss and CEO Jensen Huang on her way out.
“Working with Jensen has been the experience of a lifetime,” she concluded of her time reporting into the billionaire from humble beginnings.
After nearly seven years of running investor relations and strategic finance at the chipmaker, she gushed on LinkedIn that Huang is “in a class of his own” before sharing the three leadership lessons he taught her: “First principles thinking, zero-billion dollar markets, speed-of-light execution and so much more.”
“He inspired me to reach to the limits, made me laugh to tears, and taught me the harmony of work and family,” Jankowski added.
The world’s most valuable company—thanks to Huang’s first principles thinking and zero-billion dollar market concepts
After an initial foray into developing graphics processors for computer games, the company invented one of the first AI-friendly GPUs and now it’s dominating the market, selling over 70% of all AI chips.
Last week, Nvidia briefly topped Microsoft to become the world’s most valuable company with a market capitalization of $3.34 trillion.
Since Jankowski joined Nvidia in 2017, she boasted that she’s watched its revenue grow tenfold and its earnings and market cap have jumped by more than 20 times.
“Perhaps even more impressively, the AI compute performance delivered by NVIDIA’s flagship GPU is up over 1,000X, while the size of frontier AI models has grown by over 20,000X,” she added. “Living through exponentials like these is rare and thrilling, and keeps the learning curve steep and exciting.”
But Nvidia’s GPU success was no accident—it clearly demonstrates Huang’s habit of applying first principles thinking (that is, questioning every assumption to get to the basic element of a problem) to find innovative solutions instead of mimicking existing models, and forging a business in a zero-billion dollar market (that is, a nascent but potentially giant market).
Previously, CPUs—the most common computer chips, which date back to the 1950s—were great for executing complex calculations one at a time, but they didn’t quite fit the needs of data scientists when deep learning and AI research intensified in the 2010s.
But GPUs can perform many simple calculations at once—and as it turned out, Nvidia’s GPUs were a perfect fit for the type of computing systems AI developers needed to build and train large language models.
“Jensen is a visionary and saw the trends of GPU adoption in data centers early on and aligned the company’s strategy to that vision,” a semiconductors senior research analyst, Tristan Gerra, told Fortune.
One of its prescient moves included creating CUDA, a high-level programming tool the company built in 2007 to help unlock the full capability of its GPUs in a straightforward way.
CUDA is now so widely used that it’s difficult for companies building large language models like OpenAI’s ChatGPT to imagine themselves using other tech.
As Huang himself previously pointed out, that’s precisely what it means to operate in a zero-billion-dollar market:
“Almost all of our purposes should be to go and do something that hasn’t been done before, that is insanely hard to do, that if you achieve it could make a real contribution,” he told Stripe’s CEO Patrick Collison on stage last month.
“That market is probably zero billion dollars in size because it’s never been done before—I’d rather be a market maker than a market taker.”
Who is Simona Jankowski?
Jankowski, a Stanford University alum, worked at Goldman Sachs for her entire career before joining Nvidia.
But even then, Jankowski revealed that she had been working closely with the chipmaker for quite some time.
“As a newly minted equity research analyst at Goldman Sachs in 2001, my first assignment was building the NVDA financial model, and I met Jensen Huang as part of our initiation of coverage,” she explained in her LinkedIn post.
Following the company’s “cool product launches, rapid technology advances, supply chain trips to Taiwan” and “Q&As with Jensen”, she said, helped her make her name as an analyst.
Jankowski worked her way up the ranks, covering the semi-conductor industry within Goldman’s Global Investment Research division for years before being promoted to managing director.
Now, she’s off to join the world of startups as a chief financial officer—but she’s not yet revealed the venture in question.
Fortune has reached Jankowski for comment.