股市經(jīng)歷了有史以來最動(dòng)蕩的一個(gè)月,,標(biāo)普500、道瓊斯和納斯達(dá)克指數(shù)均在2月中旬飆至新高,,但在本周一突然暴跌,,至本周四,三大股市已完全跌入熊市,,短期內(nèi)兩度觸發(fā)熔斷機(jī)制,。市場(chǎng)觀察人士再次質(zhì)疑,高頻算法交易加劇了股市的跌勢(shì),。
算法交易是指計(jì)算機(jī)根據(jù)預(yù)設(shè)指令自動(dòng)執(zhí)行交易,這種方式已經(jīng)使用了很長(zhǎng)時(shí)間,,在如今股市每天的漲跌中扮演重要角色,。那些打電話給經(jīng)紀(jì)人,讓他幫你進(jìn)行交易的日子幾乎已經(jīng)一去不復(fù)返了,。
人類做出判斷可能會(huì)受到情緒或本能的影響,,但計(jì)算機(jī)可以迅速冷靜地做出“買進(jìn)”或“賣出”的決定。
算法交易是“危險(xiǎn)的催化劑”
但是,,當(dāng)市場(chǎng)急劇下跌時(shí),,人們就會(huì)指責(zé)算法交易放大了市場(chǎng)暴跌的程度,加劇了投資者恐慌,。例如,,如果止損限價(jià)被整體觸發(fā),算法交易可能會(huì)導(dǎo)致滾雪球式的拋售,,導(dǎo)致市場(chǎng)螺旋下滑,。
一些市場(chǎng)觀察人士指責(zé)算法交易為“危險(xiǎn)的波動(dòng)催化劑”。
然而,,值得注意的是,,當(dāng)股市一片大好時(shí),很少會(huì)聽到對(duì)算法交易的批評(píng),。
木星資產(chǎn)管理公司的基金經(jīng)理蓋伊·德·布羅內(nèi)向美國(guó)全國(guó)廣播公司財(cái)經(jīng)頻道表示,,2018年,,美國(guó)股市每天80%的交易量都是由機(jī)器完成的。摩根大通量化和衍生品研究全球主管馬爾科·克蘭諾維奇2017年說,,“自主交易者”只占股市交易量的10%,,相比之下,使用算法做出被動(dòng)和量化投資決策的占60%,。
機(jī)構(gòu)投資者和對(duì)沖基金常常使用算法交易,,它的優(yōu)勢(shì)包括執(zhí)行速度快、交易成本低,、前后策略保持一致,。
算法可以被設(shè)定為動(dòng)量策略,即買進(jìn)上漲的股票,,或者賣出下跌的股票,,或者,也可以設(shè)定為買入或賣出高于或低于近期交易區(qū)間的股票,。
因此,,當(dāng)市場(chǎng)大幅下跌時(shí),軟件將迅速執(zhí)行大額賣出的指令,。美國(guó)股市有所謂的熔斷機(jī)制,,當(dāng)股價(jià)暴跌7%時(shí)暫停交易,之后在下跌13%和20%時(shí)再次發(fā)生熔斷,。這正是近期發(fā)生的情景,。
算法交易也可能是市場(chǎng)減震器?
算法交易能使投資者通過識(shí)別資產(chǎn)價(jià)格的微小差異,,以進(jìn)行利潤(rùn)豐厚的套利交易,,或許還能從匯率波動(dòng)中獲利。
計(jì)算機(jī)也可以被設(shè)定為某個(gè)固定模式,,對(duì)實(shí)時(shí)發(fā)布的經(jīng)濟(jì)數(shù)據(jù),,如就業(yè)率或美聯(lián)儲(chǔ)的利率變動(dòng)等立刻做出反應(yīng),這也會(huì)放大這些數(shù)據(jù)對(duì)市場(chǎng)的影響,。
交易軟件還可以用來避免在交易日中臨時(shí)產(chǎn)生的問題,。例如,養(yǎng)老基金等大型機(jī)構(gòu)投資者在進(jìn)行大規(guī)模股票購(gòu)買時(shí),,可能會(huì)把訂單拆解為大量小訂單,,他們就會(huì)使用自動(dòng)交易軟件操作,以避免股價(jià)突然被推高,。
閃電崩盤或因高頻交易所致
現(xiàn)在,,人們?cè)絹碓蕉嗟匕阉惴ń灰缀蜋C(jī)器學(xué)習(xí)結(jié)合,創(chuàng)造出越來越復(fù)雜的自動(dòng)投資方式,。
投資銀行摩根大通去年表示,,該行正在使用機(jī)器學(xué)習(xí)來提供有競(jìng)爭(zhēng)力的定價(jià),,他們有一個(gè)名為“演算執(zhí)行深度神經(jīng)網(wǎng)”的機(jī)器學(xué)習(xí)平臺(tái),利用其來優(yōu)化每天在外匯市場(chǎng)上6.6萬億美元的交易,。
與此同時(shí),,投資者越來越多地依賴機(jī)器人顧問,后者會(huì)利用算法,,根據(jù)個(gè)人目標(biāo)量身定制出客戶的在線投資策略,。
算法交易的一個(gè)分支是高頻交易,指的是投資者在一秒不到的時(shí)間內(nèi)買賣股票,,以期從股價(jià)的微小波動(dòng)中獲利,。高頻交易給市場(chǎng)帶來了流動(dòng)性,但這種做法存在爭(zhēng)議,,因?yàn)槿藗冋J(rèn)為它造成了一系列原因不明的市場(chǎng)崩盤,。
2010年5月6日,美國(guó)股市蒸發(fā)了約1萬億美元,,道瓊斯工業(yè)股票平均價(jià)格指數(shù)在一次奇怪的“閃電崩盤”中暴跌近1000點(diǎn),,隨后又收復(fù)大部分失地。
2010年的一份官方報(bào)告稱,,此次崩盤發(fā)生在市場(chǎng)非常緊張的一天,,當(dāng)時(shí)一家共同基金通過自動(dòng)執(zhí)行算法,在20分鐘內(nèi)賣出了41億美元的迷你標(biāo)普期貨合約,,引發(fā)了迷你期貨市場(chǎng)的流動(dòng)性危機(jī),。
這之后,外匯市場(chǎng)上多次閃電崩盤均被認(rèn)為是因算法交易而被擴(kuò)大的,。
美國(guó)財(cái)經(jīng)作家邁克爾?劉易斯在他2014年出版的《快閃小子》一書中稱,高頻交易商利用超高速通信帶來的瞬間優(yōu)勢(shì),,以犧牲市場(chǎng)上其他參與者的利益為代價(jià),,賺取了數(shù)十億美元。
據(jù)《華爾街日?qǐng)?bào)》最近報(bào)道,,自那以后,,越來越多的交易所設(shè)置了“減速帶”,在執(zhí)行交易時(shí)設(shè)置微小延遲,,以削弱高頻交易者的優(yōu)勢(shì),。(財(cái)富中文網(wǎng))
譯者:Agatha
責(zé)編:雨晨
股市經(jīng)歷了有史以來最動(dòng)蕩的一個(gè)月,標(biāo)普500,、道瓊斯和納斯達(dá)克指數(shù)均在2月中旬飆至新高,,但在本周一突然暴跌,至本周四,,三大股市已完全跌入熊市,,短期內(nèi)兩度觸發(fā)熔斷機(jī)制,。市場(chǎng)觀察人士再次質(zhì)疑,高頻算法交易加劇了股市的跌勢(shì),。
算法交易是指計(jì)算機(jī)根據(jù)預(yù)設(shè)指令自動(dòng)執(zhí)行交易,,這種方式已經(jīng)使用了很長(zhǎng)時(shí)間,在如今股市每天的漲跌中扮演重要角色,。那些打電話給經(jīng)紀(jì)人,,讓他幫你進(jìn)行交易的日子幾乎已經(jīng)一去不復(fù)返了。
人類做出判斷可能會(huì)受到情緒或本能的影響,,但計(jì)算機(jī)可以迅速冷靜地做出“買進(jìn)”或“賣出”的決定,。
算法交易是“危險(xiǎn)的催化劑”
但是,當(dāng)市場(chǎng)急劇下跌時(shí),,人們就會(huì)指責(zé)算法交易放大了市場(chǎng)暴跌的程度,,加劇了投資者恐慌。例如,,如果止損限價(jià)被整體觸發(fā),,算法交易可能會(huì)導(dǎo)致滾雪球式的拋售,導(dǎo)致市場(chǎng)螺旋下滑,。
一些市場(chǎng)觀察人士指責(zé)算法交易為“危險(xiǎn)的波動(dòng)催化劑”,。
然而,值得注意的是,,當(dāng)股市一片大好時(shí),,很少會(huì)聽到對(duì)算法交易的批評(píng)。
木星資產(chǎn)管理公司的基金經(jīng)理蓋伊·德·布羅內(nèi)向美國(guó)全國(guó)廣播公司財(cái)經(jīng)頻道表示,,2018年,,美國(guó)股市每天80%的交易量都是由機(jī)器完成的。摩根大通量化和衍生品研究全球主管馬爾科·克蘭諾維奇2017年說,,“自主交易者”只占股市交易量的10%,,相比之下,使用算法做出被動(dòng)和量化投資決策的占60%,。
機(jī)構(gòu)投資者和對(duì)沖基金常常使用算法交易,,它的優(yōu)勢(shì)包括執(zhí)行速度快、交易成本低,、前后策略保持一致,。
算法可以被設(shè)定為動(dòng)量策略,即買進(jìn)上漲的股票,,或者賣出下跌的股票,,或者,也可以設(shè)定為買入或賣出高于或低于近期交易區(qū)間的股票。
因此,,當(dāng)市場(chǎng)大幅下跌時(shí),,軟件將迅速執(zhí)行大額賣出的指令。美國(guó)股市有所謂的熔斷機(jī)制,,當(dāng)股價(jià)暴跌7%時(shí)暫停交易,,之后在下跌13%和20%時(shí)再次發(fā)生熔斷。這正是近期發(fā)生的情景,。
算法交易也可能是市場(chǎng)減震器,?
算法交易能使投資者通過識(shí)別資產(chǎn)價(jià)格的微小差異,以進(jìn)行利潤(rùn)豐厚的套利交易,,或許還能從匯率波動(dòng)中獲利,。
計(jì)算機(jī)也可以被設(shè)定為某個(gè)固定模式,對(duì)實(shí)時(shí)發(fā)布的經(jīng)濟(jì)數(shù)據(jù),,如就業(yè)率或美聯(lián)儲(chǔ)的利率變動(dòng)等立刻做出反應(yīng),,這也會(huì)放大這些數(shù)據(jù)對(duì)市場(chǎng)的影響。
交易軟件還可以用來避免在交易日中臨時(shí)產(chǎn)生的問題,。例如,,養(yǎng)老基金等大型機(jī)構(gòu)投資者在進(jìn)行大規(guī)模股票購(gòu)買時(shí),可能會(huì)把訂單拆解為大量小訂單,,他們就會(huì)使用自動(dòng)交易軟件操作,,以避免股價(jià)突然被推高。
閃電崩盤或因高頻交易所致
現(xiàn)在,,人們?cè)絹碓蕉嗟匕阉惴ń灰缀蜋C(jī)器學(xué)習(xí)結(jié)合,,創(chuàng)造出越來越復(fù)雜的自動(dòng)投資方式。
投資銀行摩根大通去年表示,,該行正在使用機(jī)器學(xué)習(xí)來提供有競(jìng)爭(zhēng)力的定價(jià),,他們有一個(gè)名為“演算執(zhí)行深度神經(jīng)網(wǎng)”的機(jī)器學(xué)習(xí)平臺(tái),利用其來優(yōu)化每天在外匯市場(chǎng)上6.6萬億美元的交易,。
與此同時(shí),,投資者越來越多地依賴機(jī)器人顧問,后者會(huì)利用算法,,根據(jù)個(gè)人目標(biāo)量身定制出客戶的在線投資策略。
算法交易的一個(gè)分支是高頻交易,,指的是投資者在一秒不到的時(shí)間內(nèi)買賣股票,,以期從股價(jià)的微小波動(dòng)中獲利。高頻交易給市場(chǎng)帶來了流動(dòng)性,,但這種做法存在爭(zhēng)議,,因?yàn)槿藗冋J(rèn)為它造成了一系列原因不明的市場(chǎng)崩盤。
2010年5月6日,美國(guó)股市蒸發(fā)了約1萬億美元,,道瓊斯工業(yè)股票平均價(jià)格指數(shù)在一次奇怪的“閃電崩盤”中暴跌近1000點(diǎn),,隨后又收復(fù)大部分失地。
2010年的一份官方報(bào)告稱,,此次崩盤發(fā)生在市場(chǎng)非常緊張的一天,,當(dāng)時(shí)一家共同基金通過自動(dòng)執(zhí)行算法,在20分鐘內(nèi)賣出了41億美元的迷你標(biāo)普期貨合約,,引發(fā)了迷你期貨市場(chǎng)的流動(dòng)性危機(jī),。
這之后,外匯市場(chǎng)上多次閃電崩盤均被認(rèn)為是因算法交易而被擴(kuò)大的,。
美國(guó)財(cái)經(jīng)作家邁克爾?劉易斯在他2014年出版的《快閃小子》一書中稱,,高頻交易商利用超高速通信帶來的瞬間優(yōu)勢(shì),以犧牲市場(chǎng)上其他參與者的利益為代價(jià),,賺取了數(shù)十億美元,。
據(jù)《華爾街日?qǐng)?bào)》最近報(bào)道,自那以后,,越來越多的交易所設(shè)置了“減速帶”,,在執(zhí)行交易時(shí)設(shè)置微小延遲,以削弱高頻交易者的優(yōu)勢(shì),。(財(cái)富中文網(wǎng))
譯者:Agatha
責(zé)編:雨晨
The stock market has had one of its most tumultuous months on record, with the S&P 500, Dow and Nasdaq all soaring to new highs in mid-February only to crash to within a whisker of bear territory on Monday. Market watchers once again are casting a suspicious eye on the role of high-frequency algorithmic trading in exacerbating the slide.
Algorithmic trading, where a computer automatically executes trades based on pre-programmed instructions, has been around for a long time and is now a big factor in the daily ups and downs of the stock market. The days when you would call your broker to instruct a human to place the trade are mostly gone.
A computer makes “buy” or “sell” decisions quickly and dispassionately, unburdened by emotion or instinct that might cloud human judgement.
"Dangerous accelerant"...
But, when the markets fall dramatically, as they did on Monday, algorithmic trading is often accused of magnifying the market slump, and fueling investor panic. When stop-loss limits are triggered en masse, for example, it can lead to a snowball selling effect, sending a market into a downward spiral.
In the midst of Monday's historic sell-off, some markets observers were pointing a finger at algorithmic trading as a possible cause, calling it a "dangerous accelerant of volatility."
It's notable, however, that you rarely hear criticism of computerized trading when stocks are booming.
Guy De Blonay, a fund manager at Jupiter Asset Management, told CNBC in 2018 that 80% of daily moves in U.S. stocks were machine-led, while Marko Kolanovic, global head of quantitative and derivatives research at J.P. Morgan, said in 2017 that “fundamental discretionary traders” accounted for only about 10% of trading volume in stocks, compared with 60% for passive and quantitative investing, which uses algorithms to make investment decisions.
The advantages of algorithmic trading, typically used by institutional investors and hedge funds, are speed of execution, lower trading costs and sticking to a consistent strategy.
An algorithm might be designed to momentum strategy—that is buy stocks that are rising, or sell shares that are falling. Or, the software is programmed to buy or sell shares that have broken above or below their recent trading range.
And so when the markets lurch significantly lower, the software will quickly execute big sell orders. The U.S. markets have so-called staged circuit breakers to halt trading when shares surge down 7%—and later by 13% and 20%. That's precisely what happened a few minutes into the trading session on Monday.
...or markets shock-absorber?
Algorithmic trading also enables investors to make lucrative arbitrage trades by identifying tiny differences in the price of assets, perhaps profiting from exchange rates fluctuations.
Computers can also be programmed to react instantaneously, and in a set way, to timed releases of economic data—think jobs numbers or Fed interest rates moves—which can magnify their impact on markets.
The software can also be used to avoid big hiccups during the trading day. For example, big institutional investors, such as pension funds, making a large stock purchase, may break up their order into a lot of smaller orders, using automated trading software to avoid driving up the price of the shares.
Flash crash
Algorithmic trading is increasingly being coupled with machine learning to create ever more sophisticated automated investing.
Investment bank J.P. Morgan?said last year it was applying machine learning to provide competitive pricing, and optimize execution in the $6.6 trillion-a-day foreign exchange market with its Deep Neural Network for Algo Execution (DNA).
Meanwhile, investors are increasingly turning to robo-advisors, which use algorithms to create and manage online investment strategies tailored to an individual's goals.
A sub-set of algorithmic trading is high-frequency trading, where investors buy or sell shares in a fraction of a second, seeking to profit from tiny fluctuations in prices. High-frequency trading brings liquidity to markets but the practice is controversial as it's blamed for contributing to a number of unexplained market crashes.
On May 6, 2010, around $1 trillion was wiped off U.S. stocks as the Dow Jones Industrial Average plunged by nearly 1,000 points in a bizarre “flash crash” before recovering most of the losses.
An official 2010 report said the crash happened on a nervous day in the markets when a mutual fund sold $4.1 billion of EMini S&P 500 futures contracts via an automated execution algorithm in 20 minutes, precipitating a liquidity crisis in the EMini market.
Since then, algorithmic trades are thought to have magnified a number of flash crashes in the foreign exchange market.
Michael Lewis, in his 2014 book “Flash Boys”, alleged that high-frequency traders used split-second advantages provided by ultra-high-speed communications to make billions at the expense of other market players.
Since then, a growing number of exchanges have created “speed bumps”, tiny delays in executing trades, to blunt the advantage of the high-frequency traders, as The Wall Street Journal recently reported.