亚色在线观看_亚洲人成a片高清在线观看不卡_亚洲中文无码亚洲人成频_免费在线黄片,69精品视频九九精品视频,美女大黄三级,人人干人人g,全新av网站每日更新播放,亚洲三及片,wwww无码视频,亚洲中文字幕无码一区在线

首頁 500強 活動 榜單 商業(yè) 科技 領(lǐng)導(dǎo)力 專題 品牌中心
雜志訂閱

這不是演習(xí):從新冠疫情看人工智能應(yīng)對極端事件的能力

JEREMY KAHN
2020-03-27

一旦遇到“黑天鵝”案例,,多數(shù)人工智能系統(tǒng)都會出現(xiàn)難以招架的情況,。

文本設(shè)置
小號
默認(rèn)
大號
Plus(0條)

此類罕見的極端事件在金融界被稱為“黑天鵝”,通常每十年甚至一個世紀(jì)才會出現(xiàn)一次,,但都會讓市場顫抖,。新冠疫情顯然算得上是一次“黑天鵝”事件,。在數(shù)據(jù)科學(xué)和人工智能領(lǐng)域,,“黑天鵝”還有一些別稱,,如邊界情況、極端情況,、“分布外”數(shù)據(jù)點等。一旦遇到“黑天鵝”案例,,多數(shù)人工智能系統(tǒng)都會出現(xiàn)難以招架的情況,。

?對許多企業(yè)的新型人工智能系統(tǒng)而言,新冠疫情是一場實戰(zhàn)測試,,也讓我們得以看清它們究竟有多強大?,F(xiàn)在,大多數(shù)機器學(xué)習(xí)系統(tǒng)需要使用大量歷史數(shù)據(jù)進(jìn)行訓(xùn)練,,但時局驟變時會出現(xiàn)什么情況呢,?

比如說,多數(shù)AI驅(qū)動的交易算法都是在最近五年才投入使用,。其訓(xùn)練數(shù)據(jù)甚至可能都沒有囊括2008年的金融危機,,而且?guī)缀蹩梢钥隙ǖ氖牵?dāng)前的很多因素也沒有被納入其中,,例如這種由需求引發(fā)的全行業(yè)大規(guī)模沖擊,。

因此在過去幾周,,一些本應(yīng)能夠在各種市場環(huán)境中應(yīng)對自如的人工智能驅(qū)動投資策略卻交出了遠(yuǎn)不如預(yù)期的成績單。以英國熱門線上零售平臺Ocado為例,,近期其網(wǎng)站經(jīng)歷了前所未有的流量暴增,,比創(chuàng)建20年以來的流量峰值還要高出4倍之多。在上周四與記者舉行的電話會議中,,Ocado發(fā)言人大衛(wèi)·什利夫表示,,由于近期訪客太多,該公司使用機器學(xué)習(xí)技術(shù)來監(jiān)測網(wǎng)絡(luò)異常的網(wǎng)絡(luò)安全軟件誤以為網(wǎng)站遭受了“拒絕服務(wù)”類型的網(wǎng)絡(luò)攻擊,,繼而采取舉措阻止用戶訪問網(wǎng)站,。幸運的是,運營經(jīng)理通過人工干預(yù)避免了這次“誤傷”,。

企業(yè)該怎么做才能讓機器學(xué)習(xí)模型應(yīng)對這些極端情況,?DataRobot是一家專為大型企業(yè)開發(fā)、運行機器學(xué)習(xí)模型的波士頓初創(chuàng)企業(yè),,該公司的數(shù)據(jù)科學(xué)家杰伊·舒?zhèn)惪蔀槟峁┙鉀Q之道,。

公司實時監(jiān)控數(shù)據(jù)模型至關(guān)重要。如果某家雜貨店平常一分鐘賣22箱牛奶,,突然遇到銷量增至10倍,,肯定想知道原因。舒?zhèn)愓f,,能做到的企業(yè)并不多,。

企業(yè)要主動了解哪些機器學(xué)習(xí)模型,以及模型中的哪些輸入變量對極端事件最敏感,。他說,,從電力需求到購物,任何與人類行為相關(guān)的事務(wù)都可能因為新型冠狀病毒改變,。

企業(yè)要考慮與不同算法相關(guān)的風(fēng)險,。如果投放廣告的系統(tǒng)出現(xiàn)問題,情況可不妙,,但后果遠(yuǎn)沒有系統(tǒng)將價值100萬美元的產(chǎn)品運送到因避免社交而關(guān)閉的商店嚴(yán)重,。

企業(yè)里的數(shù)據(jù)科學(xué)家應(yīng)該跟業(yè)務(wù)領(lǐng)域?qū)<易聛恚瑢ο到y(tǒng)進(jìn)行模擬壓力測試:出現(xiàn)危機時,,客戶可能想要什么樣的產(chǎn)品,?如果成千上萬顧客要在一周內(nèi)采購六個月用的衛(wèi)生紙,供應(yīng)管理算法要如何應(yīng)對,?

數(shù)據(jù)科學(xué)家可以調(diào)整人工智能系統(tǒng)調(diào)用的程序,,避免軟件因遇到極端情況崩潰。舉例來說,如果模型使用價格百分比而不是實際價格,,恢復(fù)正常功能會更迅速,。

公司應(yīng)該尋找數(shù)據(jù)中可能存在的代理指標(biāo):現(xiàn)在發(fā)生的事件更接近哪個歷史事件?是颶風(fēng)桑迪還是1973年石油危機,?

最后,,數(shù)據(jù)科學(xué)家要仔細(xì)考慮未來的訓(xùn)練數(shù)據(jù)里要不要加入當(dāng)前新型冠狀病毒導(dǎo)致的極端數(shù)據(jù)。對于某些系統(tǒng),,加入極端情況數(shù)據(jù)可能幫軟件避免受到類似危機的影響,。但在很多情況下可能適得其反,導(dǎo)致系統(tǒng)錯誤地認(rèn)為危機是一種“新常態(tài)”,。囤積衛(wèi)生紙的人買了太多,,未來幾個月內(nèi)都不用再買,所以不久的將來需求突然崩潰,,這一點人類分析師肯定能預(yù)料到,,但人工智能系統(tǒng)無法預(yù)見。

舒?zhèn)惐硎?,公司可在不同條件下建立不同類型的機器學(xué)習(xí)模型:一種是在正常情況下使用,,更經(jīng)濟但更脆弱;另一種可能效率較低,,但遇到異常數(shù)據(jù)時不容易崩潰,,在極端事件中更可靠。(財富中文網(wǎng))

譯者:梁宇

審校:夏林

此類罕見的極端事件在金融界被稱為“黑天鵝”,,通常每十年甚至一個世紀(jì)才會出現(xiàn)一次,,但都會讓市場顫抖。新冠疫情顯然算得上是一次“黑天鵝”事件,。在數(shù)據(jù)科學(xué)和人工智能領(lǐng)域,,“黑天鵝”還有一些別稱,如邊界情況,、極端情況,、“分布外”數(shù)據(jù)點等。一旦遇到“黑天鵝”案例,,多數(shù)人工智能系統(tǒng)都會出現(xiàn)難以招架的情況,。

對許多企業(yè)的新型人工智能系統(tǒng)而言,,新冠疫情是一場實戰(zhàn)測試,,也讓我們得以看清它們究竟有多強大。現(xiàn)在,,大多數(shù)機器學(xué)習(xí)系統(tǒng)需要使用大量歷史數(shù)據(jù)進(jìn)行訓(xùn)練,,但時局驟變時會出現(xiàn)什么情況呢?

比如說,多數(shù)AI驅(qū)動的交易算法都是在最近五年才投入使用,。其訓(xùn)練數(shù)據(jù)甚至可能都沒有囊括2008年的金融危機,,而且?guī)缀蹩梢钥隙ǖ氖牵?dāng)前的很多因素也沒有被納入其中,,例如這種由需求引發(fā)的全行業(yè)大規(guī)模沖擊,。

因此在過去幾周,一些本應(yīng)能夠在各種市場環(huán)境中應(yīng)對自如的人工智能驅(qū)動投資策略卻交出了遠(yuǎn)不如預(yù)期的成績單,。以英國熱門線上零售平臺Ocado為例,,近期其網(wǎng)站經(jīng)歷了前所未有的流量暴增,比創(chuàng)建20年以來的流量峰值還要高出4倍之多,。在上周四與記者舉行的電話會議中,,Ocado發(fā)言人大衛(wèi)·什利夫表示,由于近期訪客太多,,該公司使用機器學(xué)習(xí)技術(shù)來監(jiān)測網(wǎng)絡(luò)異常的網(wǎng)絡(luò)安全軟件誤以為網(wǎng)站遭受了“拒絕服務(wù)”類型的網(wǎng)絡(luò)攻擊,,繼而采取舉措阻止用戶訪問網(wǎng)站。幸運的是,,運營經(jīng)理通過人工干預(yù)避免了這次“誤傷”,。

企業(yè)該怎么做才能讓機器學(xué)習(xí)模型應(yīng)對這些極端情況?DataRobot是一家專為大型企業(yè)開發(fā),、運行機器學(xué)習(xí)模型的波士頓初創(chuàng)企業(yè),,該公司的數(shù)據(jù)科學(xué)家杰伊·舒?zhèn)惪蔀槟峁┙鉀Q之道。

公司實時監(jiān)控數(shù)據(jù)模型至關(guān)重要,。如果某家雜貨店平常一分鐘賣22箱牛奶,,突然遇到銷量增至10倍,肯定想知道原因,。舒?zhèn)愓f,,能做到的企業(yè)并不多。

企業(yè)要主動了解哪些機器學(xué)習(xí)模型,,以及模型中的哪些輸入變量對極端事件最敏感,。他說,從電力需求到購物,,任何與人類行為相關(guān)的事務(wù)都可能因為新型冠狀病毒改變,。

企業(yè)要考慮與不同算法相關(guān)的風(fēng)險。如果投放廣告的系統(tǒng)出現(xiàn)問題,,情況可不妙,,但后果遠(yuǎn)沒有系統(tǒng)將價值100萬美元的產(chǎn)品運送到因避免社交而關(guān)閉的商店嚴(yán)重。

企業(yè)里的數(shù)據(jù)科學(xué)家應(yīng)該跟業(yè)務(wù)領(lǐng)域?qū)<易聛?,對系統(tǒng)進(jìn)行模擬壓力測試:出現(xiàn)危機時,,客戶可能想要什么樣的產(chǎn)品,?如果成千上萬顧客要在一周內(nèi)采購六個月用的衛(wèi)生紙,供應(yīng)管理算法要如何應(yīng)對,?

數(shù)據(jù)科學(xué)家可以調(diào)整人工智能系統(tǒng)調(diào)用的程序,,避免軟件因遇到極端情況崩潰。舉例來說,,如果模型使用價格百分比而不是實際價格,,恢復(fù)正常功能會更迅速。

公司應(yīng)該尋找數(shù)據(jù)中可能存在的代理指標(biāo):現(xiàn)在發(fā)生的事件更接近哪個歷史事件,?是颶風(fēng)桑迪還是1973年石油危機,?

最后,數(shù)據(jù)科學(xué)家要仔細(xì)考慮未來的訓(xùn)練數(shù)據(jù)里要不要加入當(dāng)前新型冠狀病毒導(dǎo)致的極端數(shù)據(jù),。對于某些系統(tǒng),,加入極端情況數(shù)據(jù)可能幫軟件避免受到類似危機的影響。但在很多情況下可能適得其反,,導(dǎo)致系統(tǒng)錯誤地認(rèn)為危機是一種“新常態(tài)”,。囤積衛(wèi)生紙的人買了太多,未來幾個月內(nèi)都不用再買,,所以不久的將來需求突然崩潰,,這一點人類分析師肯定能預(yù)料到,但人工智能系統(tǒng)無法預(yù)見,。

舒?zhèn)惐硎?,公司可在不同條件下建立不同類型的機器學(xué)習(xí)模型:一種是在正常情況下使用,更經(jīng)濟但更脆弱,;另一種可能效率較低,,但遇到異常數(shù)據(jù)時不容易崩潰,在極端事件中更可靠,。(財富中文網(wǎng))

譯者:梁宇

審校:夏林

In finance, they are called black swans. Those rare, extreme events that come along only once every decade or even once a century and can send markets reeling. The global coronavirus pandemic is certainly one. In data science and artificial intelligence circles, those same kind of events are known by different names: edge cases, corner cases, or “out-of-distribution” datapoints. And most A.I. systems do not cope well when confronted with them.

The coronavirus pandemic is providing a real-world test of how robust many companies’ new-fangled A.I. systems really are.Most of today’s machine learning systems need to be trained on lots of historical data. But what happens when the present suddenly stops looking like the recent past?

Most A.I.-driven trading algorithms, for instance, have only been implemented in the last five years. Their training data might not even have included the 2008 financial crisis. They almost certainly don’t include anything like the massive demand-driven shock we’re seeing across all industries right now.

So, some A.I.-driven investment strategies that were supposed to do well in all kinds of different market conditions have actually performed much worsethan expected in the past few weeks.Another example: Ocado, a popular online grocery business in the U.K., has seen traffic to its website spike four times higher than any previous peak the company has experienced in its 20-year history. In a conference call with reporters Thursday, Ocado spokesman David Shriver said so many visitors went to its website that the company’s cybersecurity software, which uses machine learning to detect aberrant behavior, assumed the site was experiencing a denial of service cyberattack and moved to block those connections. Luckily, human operations managers intervened to prevent that from happening.

What can a company do to make sure its machine learning models are able to cope with these extremes? Jay Schuren, a data scientist at DataRobot, a Boston startup that helps large corporations create and run machine learning models, has tips.

It’s vital that companies monitor their data models in real-time. For a grocery that normally sells 22 cartons of milk a minute, you want to know if you suddenly start selling 10 times that amount. Not enough businesses do this today, Schuren says.

Businesses need to be proactive about which machine learning models and which input variables within the models are most sensitive to extreme events. Anything that depends on human behavior—from electricity demand to shopping—will probably change because of Covid-19, he says.

Businesses need to think about the risks associated with different algorithms. If a system for placing ads goes haywire, that’s not good, but the consequences are a lot less severe than a system dispatching $1 million worth of products to a store that’s now shuttered due to social distancing measures.

A company’s data scientists should sit down with the business's subject-matter experts and stress-test a system in simulation: What items might customers want in a crisis? And what will happen to your supply management algorithm if you do get thousands of people wanting to purchase six months' worth of toilet paper in a week?

Data scientists can rejigger which inputs an A.I. system uses so the software might be less thrown-off by extreme variations: For instance, rather than using prices as an input variable, a model that uses the percentage change in prices instead will return to normal functioning faster.

Companies should look for proxies that might exist in their data: Does this look like what happened during Hurricane Sandy or what happened during the 1973 oil crisis?

Finally, data scientists need to think carefully about whether they want the current coronavirus extremes included in future training data. For some systems, doing so might inoculate the software from being caught off guard by a similar crisis. But in a lot of other cases, it might have the opposite effect, leading the system to falsely expect that the crisis reflects a “new normal.” All those people stockpiling toilet paper today may have so much on hand they won’t need to buy any more for months, resulting in a sudden crash in demand in the near-future that the A.I. system won’t be able to foresee, even though a human analyst would certainly expect it.

Schuren says that companies could benefit from building families of different types of machine learning models for different conditions: one type that is more economically efficient, but more fragile, that they use in normal circumstances, and another that is maybe less efficient, but also less prone to break when confronted with abnormal data, that they can fall back on during extreme events.

財富中文網(wǎng)所刊載內(nèi)容之知識產(chǎn)權(quán)為財富媒體知識產(chǎn)權(quán)有限公司及/或相關(guān)權(quán)利人專屬所有或持有,。未經(jīng)許可,禁止進(jìn)行轉(zhuǎn)載,、摘編,、復(fù)制及建立鏡像等任何使用。
0條Plus
精彩評論
評論

撰寫或查看更多評論

請打開財富Plus APP

前往打開
熱讀文章