人類一直冀望開發(fā)出可以對抗未來新冠病毒變種的通用疫苗,,而現(xiàn)在我們距離夢想成真又近了一步,。
流行病防范創(chuàng)新聯(lián)盟(Coalition for Epidemic Preparedness Innovations)已經(jīng)同意向美國加利福尼亞州埃默里維爾一家成立6年的生物技術公司——Gritstone提供2060萬美元資金,資助其對一款“通用”新冠疫苗進行測試,。
流行病防范創(chuàng)新聯(lián)盟是一家跨國組織,,由多國政府、非政府組織于2016年攜手成立,,該組織致力于創(chuàng)建能夠對大流行病進行快速反應的機制,。新冠疫情則是該組織碰到的第一個真正考驗。
流行病防范創(chuàng)新聯(lián)盟的首席執(zhí)行官理查德?哈切特說:“新冠肺炎變異毒株已經(jīng)導致部分疫苗效力降低,,所以我們一定不能放松警惕,。如果我們想提前為應對這種致命病毒做好準備,就必須繼續(xù)對關鍵疫苗研發(fā)工作進行投資,?!?/p>
Gritstone將利用前述投資在南非對其新冠疫苗開展初期人體臨床試驗。該公司在8月17日的公告中稱,,相關試驗將于年底前啟動,。
Gritstone同時表示,這筆資金將被用于進行各項臨床前研究,,提高公司的研發(fā),、制造能力,并幫助其開發(fā)出更穩(wěn)定的疫苗,。此前,,該公司的研究還得到了美國國家過敏與傳染病研究所(U.S. National Institute of Allergy and Infectious Diseases)、拉霍亞免疫學研究所(La Jolla Institute for Immunology)和比爾及梅林達?蓋茨基金會(Bill & Melinda Gates Foundation)的支持,。
根據(jù)Gritstone與流行病防范創(chuàng)新聯(lián)盟簽署的最新資助協(xié)議,,如果該公司的通用新冠疫苗研發(fā)成功,相關疫苗將通過新冠肺炎疫苗實施計劃(COVAX)架構供應全球,,也就是說,,發(fā)展中國家也將可以獲得這種疫苗,。新冠肺炎疫苗實施計劃由新冠肺炎疫苗實施計劃、疫苗推廣機構全球疫苗免疫聯(lián)盟(Gavi),、世界衛(wèi)生組織(World Health Organization)牽頭成立,,其使命是讓全球各國都能夠公平獲得新冠疫苗。
全球現(xiàn)有多個致力于開發(fā)通用新冠疫苗的生物技術研發(fā)團體,,Gritstone只是其中之一,。其他類似團體還包括比利時初創(chuàng)公司myNEO以及來自杜克大學(Duke University)沃爾特里德陸軍研究所(Walter Reed Army Institute)和北卡羅來納大學教堂山分校(University of North Carolina at Chapel Hill)的獨立學術團隊。這些機構擁有相同的目標,,那就是找到一種可以更好應對新冠病毒未來突變的強力疫苗,,只是采用的研發(fā)策略和技術略有不同。不過,,流行病防范創(chuàng)新聯(lián)盟對Gritstone臨床試驗的資助能夠被看作是對該團隊目前進展的重要肯定,。
Gritstone的信使RNA(mRNA)技術與輝瑞(Pfizer)、Moderna在開發(fā)新冠疫苗時使用的技術類似,,但二者之間也存在一些重要區(qū)別?,F(xiàn)有mRNA疫苗僅可以促使人體細胞產(chǎn)生一種冠狀病毒蛋白,即新冠病毒借以感染細胞的刺突蛋白,,導致現(xiàn)有疫苗容易被新冠病毒變種(例如德爾塔變種病毒)的刺突蛋白突變所突破,,造成突破感染。
而Gritstone的疫苗則不同,,除刺突蛋白外,,其還能夠指導細胞產(chǎn)生與新冠病毒相關的其他蛋白,特別是整個冠狀病毒家族中變異不大的各種蛋白,。雖然在許多情況下,,我們對其功能的認識仍然不全面,但各方普遍認為,,這些蛋白之所以可以“保存良好”,,是因為其為病毒生存所必需,因而可能不太容易出現(xiàn)能夠使病毒“逃逸免疫”的突變,。此外,,由于該疫苗同時瞄準了多種蛋白,任何一種新冠變異體不太可能在所有蛋白中都產(chǎn)生足以使其“逃逸免疫”的突變,。
此外,,Gritstone正在對所謂“自擴增型mRNA”(或SAM)疫苗的使用進行研究,這也是其與現(xiàn)行做法的重大差異之一?,F(xiàn)有mRNA疫苗僅可以促使細胞產(chǎn)生有限數(shù)量的病毒蛋白,,而SAM疫苗則能夠欺騙細胞產(chǎn)生更多的特定蛋白。也就是說,少量疫苗將有可能會帶來更強力的免疫效果,,如此一來,,民眾后續(xù)就不再需要多次接種疫苗或接種加強針疫苗。
不過也有研究者對Gritstone采用的方法持懷疑態(tài)度,。首先,,目前唯一被證明可以防止感染新冠病毒的抗體就產(chǎn)生于對刺突蛋白的免疫反應。雖然訓練體內B細胞和T細胞識別其他病毒蛋白或許也能夠幫助人體啟動免疫反應,,但因為抗體還可以阻止病毒使用其刺突感染細胞,,目前尚不清楚在沒有抗體的情況下此種免疫反應能夠起到多大效果。
此外,,也有研究者擔心,,除非設計極為精準且與其他分子共同使用,否則SAM疫苗可能會對部分免疫系統(tǒng)造成過度刺激,,進而對mRNA造成傷害、減少細胞的病毒蛋白質產(chǎn)量,,最終導致疫苗效力下降,。
最后,由于此種方法是通過促使細胞同時顯示多種病毒蛋白(來提升免疫效果),,有人擔心這會耗盡B細胞和T細胞的反應能力,,讓人體的“防御戰(zhàn)線”拉得過長,降低疫苗效力,。
Gritstone表示,,作為其所謂CORAL新冠疫苗開發(fā)平臺的任務之一,該公司將對是否可能通過黑猩猩腺病毒載體技術(與阿斯利康現(xiàn)行新冠疫苗開發(fā)技術相似)或結合使用腺病毒和SAM技術開發(fā)通用新冠疫苗展開試驗,。
該公司表示:“加上流行病防范創(chuàng)新聯(lián)盟支持的研究項目,,相關臨床試驗將對4種不同的候選疫苗進行測試,為CORAL項目確定青少年,、老年人,、已接種疫苗人群及免疫缺陷人群的最佳接種劑量和抗原含量?!?/p>
作為一家在納斯達克(Nasdaq)上市的公司,,Gritstone的主營業(yè)務是開發(fā)用于癌癥治療的SAM技術。該公司現(xiàn)有兩款腫瘤藥物正在進行II期人體試驗,,一款用于治療結直腸癌,,另一款用于治療肺癌。不過該公司最近也開始將艾滋病,、新冠肺炎等傳染病納入自己的研究范圍之中,。(財富中文網(wǎng))
譯者:梁宇
審校:夏林
人類一直冀望開發(fā)出可以對抗未來新冠病毒變種的通用疫苗,而現(xiàn)在我們距離夢想成真又近了一步,。
流行病防范創(chuàng)新聯(lián)盟(Coalition for Epidemic Preparedness Innovations)已經(jīng)同意向美國加利福尼亞州埃默里維爾一家成立6年的生物技術公司——Gritstone提供2060萬美元資金,,資助其對一款“通用”新冠疫苗進行測試,。
流行病防范創(chuàng)新聯(lián)盟是一家跨國組織,由多國政府,、非政府組織于2016年攜手成立,,該組織致力于創(chuàng)建能夠對大流行病進行快速反應的機制。新冠疫情則是該組織碰到的第一個真正考驗,。
流行病防范創(chuàng)新聯(lián)盟的首席執(zhí)行官理查德?哈切特說:“新冠肺炎變異毒株已經(jīng)導致部分疫苗效力降低,,所以我們一定不能放松警惕。如果我們想提前為應對這種致命病毒做好準備,,就必須繼續(xù)對關鍵疫苗研發(fā)工作進行投資,。”
Gritstone將利用前述投資在南非對其新冠疫苗開展初期人體臨床試驗,。該公司在8月17日的公告中稱,,相關試驗將于年底前啟動。
Gritstone同時表示,,這筆資金將被用于進行各項臨床前研究,,提高公司的研發(fā)、制造能力,,并幫助其開發(fā)出更穩(wěn)定的疫苗,。此前,該公司的研究還得到了美國國家過敏與傳染病研究所(U.S. National Institute of Allergy and Infectious Diseases),、拉霍亞免疫學研究所(La Jolla Institute for Immunology)和比爾及梅林達?蓋茨基金會(Bill & Melinda Gates Foundation)的支持,。
根據(jù)Gritstone與流行病防范創(chuàng)新聯(lián)盟簽署的最新資助協(xié)議,如果該公司的通用新冠疫苗研發(fā)成功,,相關疫苗將通過新冠肺炎疫苗實施計劃(COVAX)架構供應全球,,也就是說,發(fā)展中國家也將可以獲得這種疫苗,。新冠肺炎疫苗實施計劃由新冠肺炎疫苗實施計劃,、疫苗推廣機構全球疫苗免疫聯(lián)盟(Gavi)、世界衛(wèi)生組織(World Health Organization)牽頭成立,,其使命是讓全球各國都能夠公平獲得新冠疫苗,。
全球現(xiàn)有多個致力于開發(fā)通用新冠疫苗的生物技術研發(fā)團體,,Gritstone只是其中之一,。其他類似團體還包括比利時初創(chuàng)公司myNEO以及來自杜克大學(Duke University)沃爾特里德陸軍研究所(Walter Reed Army Institute)和北卡羅來納大學教堂山分校(University of North Carolina at Chapel Hill)的獨立學術團隊,。這些機構擁有相同的目標,那就是找到一種可以更好應對新冠病毒未來突變的強力疫苗,,只是采用的研發(fā)策略和技術略有不同,。不過,流行病防范創(chuàng)新聯(lián)盟對Gritstone臨床試驗的資助能夠被看作是對該團隊目前進展的重要肯定。
Gritstone的信使RNA(mRNA)技術與輝瑞(Pfizer),、Moderna在開發(fā)新冠疫苗時使用的技術類似,,但二者之間也存在一些重要區(qū)別。現(xiàn)有mRNA疫苗僅可以促使人體細胞產(chǎn)生一種冠狀病毒蛋白,,即新冠病毒借以感染細胞的刺突蛋白,,導致現(xiàn)有疫苗容易被新冠病毒變種(例如德爾塔變種病毒)的刺突蛋白突變所突破,造成突破感染,。
而Gritstone的疫苗則不同,,除刺突蛋白外,其還能夠指導細胞產(chǎn)生與新冠病毒相關的其他蛋白,,特別是整個冠狀病毒家族中變異不大的各種蛋白,。雖然在許多情況下,我們對其功能的認識仍然不全面,,但各方普遍認為,,這些蛋白之所以可以“保存良好”,是因為其為病毒生存所必需,,因而可能不太容易出現(xiàn)能夠使病毒“逃逸免疫”的突變,。此外,由于該疫苗同時瞄準了多種蛋白,,任何一種新冠變異體不太可能在所有蛋白中都產(chǎn)生足以使其“逃逸免疫”的突變,。
此外,,Gritstone正在對所謂“自擴增型mRNA”(或SAM)疫苗的使用進行研究,,這也是其與現(xiàn)行做法的重大差異之一。現(xiàn)有mRNA疫苗僅可以促使細胞產(chǎn)生有限數(shù)量的病毒蛋白,,而SAM疫苗則能夠欺騙細胞產(chǎn)生更多的特定蛋白,。也就是說,少量疫苗將有可能會帶來更強力的免疫效果,,如此一來,,民眾后續(xù)就不再需要多次接種疫苗或接種加強針疫苗。
不過也有研究者對Gritstone采用的方法持懷疑態(tài)度,。首先,,目前唯一被證明可以防止感染新冠病毒的抗體就產(chǎn)生于對刺突蛋白的免疫反應。雖然訓練體內B細胞和T細胞識別其他病毒蛋白或許也能夠幫助人體啟動免疫反應,,但因為抗體還可以阻止病毒使用其刺突感染細胞,,目前尚不清楚在沒有抗體的情況下此種免疫反應能夠起到多大效果。
此外,,也有研究者擔心,,除非設計極為精準且與其他分子共同使用,否則SAM疫苗可能會對部分免疫系統(tǒng)造成過度刺激,進而對mRNA造成傷害,、減少細胞的病毒蛋白質產(chǎn)量,,最終導致疫苗效力下降。
最后,,由于此種方法是通過促使細胞同時顯示多種病毒蛋白(來提升免疫效果),,有人擔心這會耗盡B細胞和T細胞的反應能力,讓人體的“防御戰(zhàn)線”拉得過長,,降低疫苗效力,。
Gritstone表示,作為其所謂CORAL新冠疫苗開發(fā)平臺的任務之一,,該公司將對是否可能通過黑猩猩腺病毒載體技術(與阿斯利康現(xiàn)行新冠疫苗開發(fā)技術相似)或結合使用腺病毒和SAM技術開發(fā)通用新冠疫苗展開試驗,。
該公司表示:“加上流行病防范創(chuàng)新聯(lián)盟支持的研究項目,相關臨床試驗將對4種不同的候選疫苗進行測試,,為CORAL項目確定青少年,、老年人、已接種疫苗人群及免疫缺陷人群的最佳接種劑量和抗原含量,?!?/p>
作為一家在納斯達克(Nasdaq)上市的公司,Gritstone的主營業(yè)務是開發(fā)用于癌癥治療的SAM技術,。該公司現(xiàn)有兩款腫瘤藥物正在進行II期人體試驗,,一款用于治療結直腸癌,另一款用于治療肺癌,。不過該公司最近也開始將艾滋病,、新冠肺炎等傳染病納入自己的研究范圍之中。(財富中文網(wǎng))
譯者:梁宇
審校:夏林
The prospect of a next-generation COVID-19 vaccine that could offer protection against future virus variants took a step closer to reality at now.
The Coalition for Epidemic Preparedness Innovations (CEPI) has agreed to provide $20.6 million in funding to a six-year-old biotechnology company called Gritstone, based in Emeryville, Calif., to help it test a “universal” COVID-19 vaccine.
CEPI is a global partnership of governments and nongovernmental organizations dedicated to creating mechanisms for quickly combating pandemics. COVID-19 has been the first real test for the organization, which was established in 2016.
“COVID-19 variants are already rendering some of our vaccines less effective, so it is critical that we don’t let our guard down. We must continue to invest in critical vaccine R&D if we are to stay one step ahead of this deadly virus,” Richard Hatchett, CEPI’s chief executive officer, said.
The latest funding for Gritstone will help it conduct an initial human clinical trial of its COVID-19 vaccine in South Africa. The company said in an announcement on August 17 that the trial would begin before the end of the year.
The money will also help Gritstone conduct preclinical studies, increase its research and manufacturing capacity, and help it develop a more stable vaccine, the company said. The company has previously received backing for its research from the U.S. National Institute of Allergy and Infectious Diseases (NIAID), as well as the La Jolla Institute for Immunology and the Bill & Melinda Gates Foundation.
As part of the latest CEPI funding deal, Gritstone has agreed that if it is successful in developing a universal COVID-19 vaccine, it will be made available globally through the COVAX facility, which is sponsored by CEPI, the vaccine funding body Gavi, and the World Health Organization, meaning that developing countries ought to be able to gain access to the vaccine.
Gritstone is one of several biotechnology research groups around the world pursuing a universal coronavirus vaccine. Others include Belgian startup myNEO as well as separate academic teams from the Walter Reed Army Institute of Research, Duke University, and the University of North Carolina at Chapel Hill. Each is betting on a slightly different strategy and technology to achieve the goal of a vaccine that is more robust to future coronavirus mutations. But CEPI’s funding of Gritstone’s clinical trial is an important endorsement of its progress so far.
Gritstone’s messenger RNA (mRNA) technology is similar to that used by both Pfizer and Moderna in their COVID-19 vaccines. But there are a few crucial differences: The existing mRNA vaccines prompt the body’s cells to manufacture just a single coronavirus protein—the spike protein that the virus uses to infect cells. That has made these existing vaccines vulnerable to mutations in the spike protein seen in new variants of SARS-CoV-2, such as the Delta variant.
In addition to that spike protein, Gritstone’s vaccine would instruct cells to make other proteins associated with the virus, especially targeting ones that seem not to show much variation across the whole family of coronaviruses. Although their function is not entirely understood in many cases, these “well-conserved” proteins are thought to be essential for the virus’s survival and thus may not be as susceptible to mutations that would enable the virus to elude a vaccine. Plus, by targeting multiple proteins at the same time, it becomes far less likely that any one variant would have enough mutations in all of those proteins to enable it to escape the vaccine.
Another key difference is that Gritstone is investigating the use of what is known as a “self-augmenting mRNA” (or SAM) vaccine. While existing mRNA vaccines can prompt a cell to make only a limited number of virus proteins, SAM vaccines trick the cell into producing many more copies of a particular protein. This means a smaller amount of vaccine can potentially create a more robust immune response, potentially obviating the need for second doses and booster shots.
Some researchers, however, are skeptical of Gritstone’s approach. For one thing, the only antibodies proven to prevent infection from SARS-CoV-2 form in response to the spike protein. While training the body’s B cells and T cells to recognize other virus proteins too might help a person mount an immune response, it isn’t clear how effective that response is without antibodies that can also prevent the virus from using its spike to infect cells.
In addition, some researchers worry that SAM vaccines, unless very carefully engineered and administered with other molecules, overstimulate a part of the immune system that can degrade mRNA and reduce the cell's production of the virus proteins, ultimately rendering the vaccine less effective.
Finally, there is some concern that this approach, by prompting cells to display many virus proteins at once, could exhaust the B cell and T cell response, spreading the body's defenses too thin, which would also make the vaccine less effective.
Gritstone said that as part of its COVID-19 vaccine development platform, which it calls CORAL, it will experiment with whether a universal COVID-19 vaccine could be delivered with a chimpanzee adenovirus vector technology that is similar to the one used in AstraZeneca’s current COVID-19 vaccine, or whether a combination of adenovirus and SAM technologies could be used.
“Together with the CEPI-supported study, this set of clinical trials will test four different vaccine candidates and establish optimal dosing and antigenic content for the CORAL program in young individuals, the elderly, the previously vaccinated, and the immunocompromised,” the company said.
Gritstone, whose shares are publicly traded on Nasdaq, has primarily been developing its SAM technology for use in cancer therapies. The company currently has two oncology drugs—one for use in colorectal cancer and another for lung cancer—in Phase II human trials. But it has recently broadened the scope of its research to include infectious diseases, such as HIV and SARS-CoV-2.