長(zhǎng)期新冠可能是一個(gè)至少僅靠人類無(wú)法解決的復(fù)雜問(wèn)題。
研究人員越來(lái)越多地依靠人工智能,,幫助其對(duì)數(shù)以百萬(wàn)計(jì)長(zhǎng)期新冠患者的電子病歷進(jìn)行歸類,,以更好地弄清楚這種存在數(shù)百種潛在癥狀的謎一樣的病癥。
在某些情況下,,人工智能正在為患者提供幫助:在《柳葉刀-數(shù)字醫(yī)療》(The Lancet Digital Health)最近發(fā)表的一份研究論文中,,研究人員訓(xùn)練三個(gè)機(jī)器學(xué)習(xí)模型,從之前感染新冠的患者當(dāng)中識(shí)別出潛在長(zhǎng)期新冠患者,。模型和人類都能識(shí)別出絕大多數(shù)潛在長(zhǎng)期新冠患者,,這表明人工智能可以幫助發(fā)現(xiàn)出現(xiàn)慢性病癥概率較高的患者,使他們能夠得到治療,。
紐約威爾康奈爾醫(yī)學(xué)院(Weill Cornell Medicine)醫(yī)療政策與研究助理教授王飛最近與他人共同發(fā)表了一篇研究論文,,分析了長(zhǎng)期新冠患者的診斷模式。
研究人員利用機(jī)器學(xué)習(xí)分析了數(shù)千名患者的電子病歷,,并從長(zhǎng)期新冠患者中找到了四種模式,。他表示:
? 重癥患者患有血液和心臟疾病,許多患者可能在2020年春紐約市爆發(fā)首輪疫情時(shí)被感染,。這個(gè)群體患既有病癥的數(shù)量最多,。
? 較輕癥患者患有呼吸道疾病,并伴有睡眠問(wèn)題,。
? 患者新出現(xiàn)了肌肉骨骼疾病和神經(jīng)精神疾病,。
? 患者現(xiàn)在患有胃腸道疾病,包括腹痛,。
王飛對(duì)《財(cái)富》雜志表示,,長(zhǎng)期新冠“非常復(fù)雜,因?yàn)樗恢皇且淮尾《靖腥尽?,除了炎癥和免疫系統(tǒng)疾病以外,,還會(huì)對(duì)肺部以及人體所有器官系統(tǒng)造成影響,會(huì)引發(fā)“許多復(fù)雜的反應(yīng)”,。
研究人員越早對(duì)患者進(jìn)行分類,,查明患者的病因,比如器官損傷和失控性炎癥反應(yīng)等,,就能盡早開發(fā)出針對(duì)性的療法,。王飛表示,有些患者在感染新冠之后出現(xiàn)的新疾病可能與新冠無(wú)關(guān),,但確實(shí)會(huì)混淆視聽,,所以由人工智能輔助從大量患者中找出長(zhǎng)期新冠模式至關(guān)重要,。
在開發(fā)出治療方法之后,可以使用通過(guò)機(jī)器學(xué)習(xí)模型開發(fā)的患者清單,,招募患者進(jìn)行試驗(yàn),。招募患者的過(guò)程往往需要耗費(fèi)大量成本和后勤服務(wù)。
人工智能還可以幫助研究人員進(jìn)一步按照病毒變異株和亞變異株對(duì)患者進(jìn)行分類,,從而發(fā)現(xiàn)與不同感染期相關(guān)聯(lián)的長(zhǎng)期新冠的模式,。
例如,王飛表示,,在第一波疫情中“有許多人住院,,許多患者被送進(jìn)ICU,還有許多人使用了機(jī)械輔助通氣,。當(dāng)時(shí)的死亡率也是最高的,。”
這批患者的長(zhǎng)期新冠是由新冠病毒導(dǎo)致的還是由重癥監(jiān)護(hù)后綜合征導(dǎo)致的,?后者是由創(chuàng)傷性的,、令人虛弱的ICU治療所導(dǎo)致的,其中可能包括插管治療和長(zhǎng)期臥床等,。潛在癥狀包括長(zhǎng)期肌無(wú)力,、記憶問(wèn)題和創(chuàng)傷后應(yīng)激障礙等。
王飛希望人工智能能夠盡快解開這個(gè)謎題,。
最近一項(xiàng)算法輔助研究發(fā)現(xiàn),,長(zhǎng)期新冠患者疫情之前使用類皮質(zhì)激素的比率較高,。許多重癥新冠患者在醫(yī)院中接受了類固醇治療,,尤其是使用呼吸機(jī)的患者。類固醇是否是導(dǎo)致長(zhǎng)期新冠的原因,,或者在其中發(fā)揮了一定作用,?或者類固醇只是代表病情更嚴(yán)重的患者,這些患者由于基礎(chǔ)病癥或更嚴(yán)重的病毒感染進(jìn)程,,患長(zhǎng)期新冠的風(fēng)險(xiǎn)更高,。
王飛沒(méi)有答案,也沒(méi)有人能夠確定,。數(shù)以百萬(wàn)計(jì)患者感染病毒之后幸存了下來(lái),,卻發(fā)現(xiàn)自己還要經(jīng)歷一場(chǎng)最為殘酷的戰(zhàn)斗,王飛希望利用人工智能進(jìn)行研究,,找到更多答案,,盡快為他們找到更多治療方法。
雖然許多人認(rèn)為奧密克戎變異株似乎更加溫和,,但有數(shù)據(jù)表明,,BA.2亞變異株引發(fā)長(zhǎng)期新冠的風(fēng)險(xiǎn)高于BA.1,。
王飛警告稱:“如果你看過(guò)所有這些數(shù)據(jù),你會(huì)在日常生活中非常小心,,繼續(xù)做好防護(hù),。因?yàn)檫@場(chǎng)疫情遠(yuǎn)沒(méi)有結(jié)束?!保ㄘ?cái)富中文網(wǎng))
翻譯:劉進(jìn)龍
審校:汪皓
長(zhǎng)期新冠可能是一個(gè)至少僅靠人類無(wú)法解決的復(fù)雜問(wèn)題,。
研究人員越來(lái)越多地依靠人工智能,幫助其對(duì)數(shù)以百萬(wàn)計(jì)長(zhǎng)期新冠患者的電子病歷進(jìn)行歸類,,以更好地弄清楚這種存在數(shù)百種潛在癥狀的謎一樣的病癥,。
在某些情況下,人工智能正在為患者提供幫助:在《柳葉刀-數(shù)字醫(yī)療》(The Lancet Digital Health)最近發(fā)表的一份研究論文中,,研究人員訓(xùn)練三個(gè)機(jī)器學(xué)習(xí)模型,,從之前感染新冠的患者當(dāng)中識(shí)別出潛在長(zhǎng)期新冠患者。模型和人類都能識(shí)別出絕大多數(shù)潛在長(zhǎng)期新冠患者,,這表明人工智能可以幫助發(fā)現(xiàn)出現(xiàn)慢性病癥概率較高的患者,,使他們能夠得到治療。
紐約威爾康奈爾醫(yī)學(xué)院(Weill Cornell Medicine)醫(yī)療政策與研究助理教授王飛最近與他人共同發(fā)表了一篇研究論文,,分析了長(zhǎng)期新冠患者的診斷模式,。
研究人員利用機(jī)器學(xué)習(xí)分析了數(shù)千名患者的電子病歷,并從長(zhǎng)期新冠患者中找到了四種模式,。他表示:
? 重癥患者患有血液和心臟疾病,,許多患者可能在2020年春紐約市爆發(fā)首輪疫情時(shí)被感染。這個(gè)群體患既有病癥的數(shù)量最多,。
? 較輕癥患者患有呼吸道疾病,,并伴有睡眠問(wèn)題。
? 患者新出現(xiàn)了肌肉骨骼疾病和神經(jīng)精神疾病,。
? 患者現(xiàn)在患有胃腸道疾病,,包括腹痛。
王飛對(duì)《財(cái)富》雜志表示,,長(zhǎng)期新冠“非常復(fù)雜,,因?yàn)樗恢皇且淮尾《靖腥尽保搜装Y和免疫系統(tǒng)疾病以外,,還會(huì)對(duì)肺部以及人體所有器官系統(tǒng)造成影響,,會(huì)引發(fā)“許多復(fù)雜的反應(yīng)”。
研究人員越早對(duì)患者進(jìn)行分類,,查明患者的病因,,比如器官損傷和失控性炎癥反應(yīng)等,就能盡早開發(fā)出針對(duì)性的療法,。王飛表示,,有些患者在感染新冠之后出現(xiàn)的新疾病可能與新冠無(wú)關(guān),,但確實(shí)會(huì)混淆視聽,所以由人工智能輔助從大量患者中找出長(zhǎng)期新冠模式至關(guān)重要,。
在開發(fā)出治療方法之后,,可以使用通過(guò)機(jī)器學(xué)習(xí)模型開發(fā)的患者清單,招募患者進(jìn)行試驗(yàn),。招募患者的過(guò)程往往需要耗費(fèi)大量成本和后勤服務(wù),。
人工智能還可以幫助研究人員進(jìn)一步按照病毒變異株和亞變異株對(duì)患者進(jìn)行分類,從而發(fā)現(xiàn)與不同感染期相關(guān)聯(lián)的長(zhǎng)期新冠的模式,。
例如,,王飛表示,在第一波疫情中“有許多人住院,,許多患者被送進(jìn)ICU,,還有許多人使用了機(jī)械輔助通氣。當(dāng)時(shí)的死亡率也是最高的,?!?/p>
這批患者的長(zhǎng)期新冠是由新冠病毒導(dǎo)致的還是由重癥監(jiān)護(hù)后綜合征導(dǎo)致的?后者是由創(chuàng)傷性的,、令人虛弱的ICU治療所導(dǎo)致的,,其中可能包括插管治療和長(zhǎng)期臥床等。潛在癥狀包括長(zhǎng)期肌無(wú)力,、記憶問(wèn)題和創(chuàng)傷后應(yīng)激障礙等,。
王飛希望人工智能能夠盡快解開這個(gè)謎題。
最近一項(xiàng)算法輔助研究發(fā)現(xiàn),,長(zhǎng)期新冠患者疫情之前使用類皮質(zhì)激素的比率較高,。許多重癥新冠患者在醫(yī)院中接受了類固醇治療,尤其是使用呼吸機(jī)的患者,。類固醇是否是導(dǎo)致長(zhǎng)期新冠的原因,,或者在其中發(fā)揮了一定作用,?或者類固醇只是代表病情更嚴(yán)重的患者,,這些患者由于基礎(chǔ)病癥或更嚴(yán)重的病毒感染進(jìn)程,患長(zhǎng)期新冠的風(fēng)險(xiǎn)更高,。
王飛沒(méi)有答案,,也沒(méi)有人能夠確定。數(shù)以百萬(wàn)計(jì)患者感染病毒之后幸存了下來(lái),,卻發(fā)現(xiàn)自己還要經(jīng)歷一場(chǎng)最為殘酷的戰(zhàn)斗,,王飛希望利用人工智能進(jìn)行研究,找到更多答案,,盡快為他們找到更多治療方法,。
雖然許多人認(rèn)為奧密克戎變異株似乎更加溫和,,但有數(shù)據(jù)表明,BA.2亞變異株引發(fā)長(zhǎng)期新冠的風(fēng)險(xiǎn)高于BA.1,。
王飛警告稱:“如果你看過(guò)所有這些數(shù)據(jù),,你會(huì)在日常生活中非常小心,繼續(xù)做好防護(hù),。因?yàn)檫@場(chǎng)疫情遠(yuǎn)沒(méi)有結(jié)束,。”(財(cái)富中文網(wǎng))
翻譯:劉進(jìn)龍
審校:汪皓
Long COVID may be too big a problem for humans to solve—alone, at least.
Increasingly, researchers are turning to artificial intelligence to help them sort through the electronic medical records of millions of long-COVID patients in hopes of better understanding the enigmatic condition with hundreds of potential symptoms.
In some cases, A.I. is helping patients: In a study published last month in The Lancet Digital Health, researchers trained three machine-learning models to identify potential long-COVID patients among hundreds who previously had COVID. Both the models and humans agreed on probable “l(fā)ong haulers” in the vast majority of cases, showing that A.I. can help flag patients who have a high probability of experiencing the chronic condition and get them to care.
Fei Wang, assistant professor of health care policy and research at Weill Cornell Medicine in New York, is coauthor of a recently published study that examined patterns of diagnoses in long-COVID patients.
The researchers used machine learning to examine the electronic health records of thousands of patients and found four patterns among long-COVID patients, he said:
? More severe patients with blood and heart issues, many of whom likely were infected during the initial wave to hit New York City in the spring of 2020. This group had the largest number of patients with preexisting conditions.
? More mild patients with respiratory issues accompanied by sleep problems.
? Patients with new musculoskeletal complaints and neuropsychiatric problems.
? Patients who now suffer from gastrointestinal issues, including abdominal pain.
Long COVID is “so complex because it involves not just an infection” but potential fallout in the lungs and nearly every organ system in the body, in addition to inflammation, immune system issues—“l(fā)ots of complicated reactions,” Wang told Fortune.
The sooner researchers can categorize patients and ascertain the cause of their disease—perhaps organ damage in some, and out-of-control inflammation in others—the sooner targeted therapies can be developed. It’s possible that some patients complaining of new ailments after COVID have unrelated issues, veritable red herrings—which is why A.I.’s assistance in sussing out patterns among the masses is critical, Wang said.
Later on, when treatments are developed, the patient lists developed by machine learning can be used to recruit patients for trials—a task that can be expensive and logistically tricky.
A.I. can also help researchers further categorize patients by variant and subvariant, enabling them to recognize patterns of long COVID that may correlate with various waves of infection.
For example, the first wave of COVID saw “l(fā)ots of people being hospitalized, lots in the ICU, lots of mechanical ventilation,” Wang said. “The mortality rate was also the highest then.”
Is the long COVID of such patients caused by the coronavirus or Post-intensive Care Syndrome? The latter is caused by a traumatic and debilitating ICU stay that may have included intubation and prolonged bed confinement. Potential symptoms can include persistent muscle weakness, memory problems, and post-traumatic stress disorder.
It’s a puzzle Wang hopes A.I. can solve, with rapidity.
A recent algorithm-assisted study found a high rate of pre-COVID corticosteroid use in long-COVID patients. Many patients with severe COVID were treated with steroids in the hospital, especially those who were on ventilators. Do steroids cause long COVID, or play a role in causing it? Or are they merely indicative of sicker patients who might be at greater risk of long COVID owing to underlying medical conditions or a more severe course of the virus?
Wang isn’t sure; no one is. But he hopes the use of A.I. in research can lead to more answers, and more treatments, sooner for the millions who survived the virus only to find another—perhaps the biggest—battle lies ahead.
Although many are talking about Omicron as if it’s a more mild strain of COVID, some data suggests that BA.2 is associated with a greater risk of long COVID than BA.1.
“If you look at all this data—you need to be careful about your daily life and protection,” Wang cautioned. “We’ve not ended this pandemic yet.”