一項最新報告披露,熱門AI圖片生成工具使用了數(shù)千張兒童性虐待圖片進(jìn)行訓(xùn)練,該報告呼吁相關(guān)公司采取措施,,解決它們開發(fā)的技術(shù)存在的有害缺陷,。
這些圖片使AI系統(tǒng)更容易生成逼真露骨的虛假兒童圖像,,并且可以將青少年在社交媒體上穿著衣服的照片變成裸體照片,這引起了世界各地學(xué)校和執(zhí)法部門的警惕,。
直到最近,,反虐待研究人員還認(rèn)為,一些不受控制的AI工具生成非法兒童圖像的唯一方法,,就是把它們從成人色情內(nèi)容和良性的兒童照片這兩組在線圖像中提取的信息組合在一起,。
但斯坦福互聯(lián)網(wǎng)觀察站(Stanford Internet Observatory)在龐大的AI數(shù)據(jù)庫LAION中發(fā)現(xiàn)了3,200多張疑似兒童性虐待圖片,。LAION是一個在線圖片與標(biāo)題索引,,被用于訓(xùn)練Stable Diffusion等當(dāng)前領(lǐng)先的圖像生成工具。該觀察組織來自斯坦福大學(xué)(Stanford University),。它與加拿大兒童保護(hù)中心(Canadian Centre for Child Protection)和其他反虐待慈善機(jī)構(gòu)合作,,發(fā)現(xiàn)非法材料,并將原始照片鏈接舉報給執(zhí)法機(jī)關(guān),。
它們的行動很快得到響應(yīng),。在2023年12月20日斯坦福互聯(lián)網(wǎng)觀察站報告發(fā)布前夜,,LAION對美聯(lián)社(The Associated Press)表示,它已經(jīng)臨時移除了其數(shù)據(jù)集,。
LAION是非營利組織大規(guī)模AI開放網(wǎng)絡(luò)(Large-scale Artificial Intelligence Open Network)的縮寫,。該組織在一份聲明中稱,其“對于非法內(nèi)容堅持零容忍的政策,,我們采取了高度謹(jǐn)慎的做法,,把LAION數(shù)據(jù)集下線,會在保證安全之后再重新發(fā)布,?!?/p>
雖然這些圖片在LAION約58億張圖片索引里只是九牛一毛,但斯坦?;ヂ?lián)網(wǎng)觀察站指出,,它可能會影響AI工具生成有害結(jié)果的能力,并讓多次出現(xiàn)的真實受害者再次回想起先前遭到的虐待,。
報告的作者,、斯坦福互聯(lián)網(wǎng)觀察站的首席技術(shù)專家大衛(wèi)·泰爾表示,,這個問題并不容易解決,,原因能夠追溯到許多生成式AI項目因為競爭激烈而“急于上市”,并大范圍推廣,。
泰爾在接受采訪時說:“匯總整個互聯(lián)網(wǎng)上的數(shù)據(jù),,并將數(shù)據(jù)集用于訓(xùn)練模型,,這本應(yīng)該僅限于研究目的,不應(yīng)該是開源的,,而且必須接受更嚴(yán)格的監(jiān)管,。”
LAION的一個主要用戶是位于英國倫敦的初創(chuàng)公司Stability AI,,它為LAION數(shù)據(jù)集的開發(fā)提供了幫助,。Stability AI開發(fā)了文本生成圖片的模型Stable Diffusion。斯坦福的報告稱,,雖然新版Stable Diffusion使用戶更難生成有害內(nèi)容,,但2022年發(fā)布的一個舊版本(Stability AI稱其并未發(fā)布該版本)依然被整合到其他應(yīng)用和工具當(dāng)中,而且仍然是“最受歡迎的生成露骨圖片的模型”,。
加拿大兒童保護(hù)中心的信息技術(shù)總監(jiān)勞埃德·理查森表示:“我們無法回收這款模型,。它被許多人安裝在本地的機(jī)器上?!奔幽么髢和Wo(hù)中心負(fù)責(zé)運營加拿大的在線性剝削舉報熱線,。
Stability AI在12月20日表示,其僅提供經(jīng)過篩查的Stable Diffusion版本,,并且“自從接管了對Stable Diffusion的獨家開發(fā)任務(wù)之后,,公司便積極采取了預(yù)防措施,以減少其被濫用的風(fēng)險,?!?/p>
該公司在一份事先準(zhǔn)備的聲明里稱:“這些過濾工具會阻止不安全的內(nèi)容進(jìn)入模型。這樣做又可以反過來幫助阻止模型生成不安全的內(nèi)容,?!?/p>
LAION源自德國研究人員和教師克里斯托弗·舒曼提出的一種理念。他在2023年早些時候告訴美聯(lián)社,,他之所以希望把一個如此龐大的可視化數(shù)據(jù)庫對外公開,,部分原因是為了確保未來AI的發(fā)展不會被幾家強(qiáng)大的公司所控制。
他說:“如果我們能夠?qū)I發(fā)展民主化,,使整個研究界和全人類都可以從中受益,,這將是更安全、更公平的做法,?!?/p>
LAION的大部分?jǐn)?shù)據(jù)來自另外一個數(shù)據(jù)庫Common Crawl。Common Crawl不斷從開放互聯(lián)網(wǎng)中抓取數(shù)據(jù),,但其執(zhí)行董事里奇·斯克倫塔指出,,LAION“有義務(wù)”在使用數(shù)據(jù)之前進(jìn)行掃描和過濾。
LAION在2023年年底表示,其開發(fā)了“嚴(yán)格的過濾工具”,,能夠在發(fā)布數(shù)據(jù)集之前監(jiān)測和移除非法內(nèi)容,,并且依舊在努力完善這些工具。斯坦福的報告承認(rèn),,LAION的開發(fā)者曾經(jīng)試圖過濾掉“未成年”露骨內(nèi)容,,但如果他們事先征求兒童安全專家的意見,本可以做得更好,。
許多文本生成圖片的工具都使用了LAION數(shù)據(jù)庫進(jìn)行訓(xùn)練,,但尚不確定具體的名單。DALL-E和ChatGPT的開發(fā)者OpenAI表示,,其并未使用LAION,,并且改進(jìn)了其模型,能夠拒絕涉及未成年人的性內(nèi)容請求,。
谷歌(Google)的文本生成圖像工具Imagen模型基于LAION的數(shù)據(jù)集,,但2022年,由于谷歌對數(shù)據(jù)庫審查后“發(fā)現(xiàn)了大量不良內(nèi)容,,包括色情圖像,、種族歧視性語言和有害的社會刻板印象”,因此公司決定放棄公開發(fā)布該模型,。
追溯性清除相關(guān)數(shù)據(jù)困難重重,,因此斯坦福互聯(lián)網(wǎng)觀察站呼吁采取更激進(jìn)的措施,。其中一項措施是,,任何人如果基于LAION-5B(該模型中包含超過50億個圖片-文本數(shù)據(jù)對,因此而得名)開發(fā)了訓(xùn)練數(shù)據(jù)集,,就應(yīng)該“刪除數(shù)據(jù)集,或者與中間方合作清理相關(guān)材料”,。另外一項措施是讓舊版Stable Diffusion從互聯(lián)網(wǎng)最陰暗的角落消失,。
泰爾表示,“合法平臺可以停止提供相關(guān)版本下載”,,尤其是在工具被頻繁用于生成不良圖像且沒有阻止此類行為的安全防護(hù)措施的情況下,。
例如,泰爾點名了CivitAI平臺,。該平臺被人們用于制作AI生成的色情內(nèi)容而受到歡迎,,但該平臺缺乏杜絕生成兒童圖片的安全措施。報告中還呼吁AI公司Hugging Face采取更有效的方法,,舉報和刪除虐待材料的鏈接,。Hugging Face為模型提供訓(xùn)練數(shù)據(jù)。
該公司稱,它長期與監(jiān)管部門和兒童安全團(tuán)體合作,,識別和刪除兒童虐待材料,。CivitAI并未回復(fù)在其網(wǎng)頁提交的置評請求。
斯坦福的報告還質(zhì)疑,,根據(jù)聯(lián)邦《兒童在線隱私保護(hù)法案》(Children’s Online Privacy Protection Act)規(guī)定的保護(hù)措施,,未經(jīng)家人同意,是否應(yīng)該把任何兒童的照片,,即便是最良性的照片,,輸入AI系統(tǒng)。
反兒童性虐待組織Thorn的數(shù)據(jù)科學(xué)總監(jiān)瑞貝卡·波特諾夫表示,,她所在機(jī)構(gòu)的研究發(fā)現(xiàn),,雖然AI生成的兒童性虐待圖像在虐待者中并不流行,但這類圖像的流傳范圍正在持續(xù)擴(kuò)大,。
開發(fā)者能夠保證開發(fā)AI模型所使用的數(shù)據(jù)集中不含兒童虐待材料,,從而減少這些傷害。波特諾夫稱,,即使在模型發(fā)布之后,,仍舊有機(jī)會徹底減少這類有害的使用。
科技公司和兒童安全團(tuán)體目前正在為視頻和圖像添加“標(biāo)簽”,,通過這種獨特的數(shù)字標(biāo)志跟蹤和移除兒童虐待內(nèi)容,。波特諾夫指出,這種理念也適用于被濫用的AI模型,。
她說:“AI行業(yè)目前還沒有這樣做,。但我認(rèn)為,他們可以而且應(yīng)該采取這種措施,?!保ㄘ敻恢形木W(wǎng))
譯者:劉進(jìn)龍
審校:汪皓
一項最新報告披露,熱門AI圖片生成工具使用了數(shù)千張兒童性虐待圖片進(jìn)行訓(xùn)練,,該報告呼吁相關(guān)公司采取措施,,解決它們開發(fā)的技術(shù)存在的有害缺陷。
這些圖片使AI系統(tǒng)更容易生成逼真露骨的虛假兒童圖像,,并且可以將青少年在社交媒體上穿著衣服的照片變成裸體照片,,這引起了世界各地學(xué)校和執(zhí)法部門的警惕。
直到最近,,反虐待研究人員還認(rèn)為,,一些不受控制的AI工具生成非法兒童圖像的唯一方法,就是把它們從成人色情內(nèi)容和良性的兒童照片這兩組在線圖像中提取的信息組合在一起,。
但斯坦?;ヂ?lián)網(wǎng)觀察站(Stanford Internet Observatory)在龐大的AI數(shù)據(jù)庫LAION中發(fā)現(xiàn)了3,200多張疑似兒童性虐待圖片,。LAION是一個在線圖片與標(biāo)題索引,被用于訓(xùn)練Stable Diffusion等當(dāng)前領(lǐng)先的圖像生成工具,。該觀察組織來自斯坦福大學(xué)(Stanford University),。它與加拿大兒童保護(hù)中心(Canadian Centre for Child Protection)和其他反虐待慈善機(jī)構(gòu)合作,發(fā)現(xiàn)非法材料,,并將原始照片鏈接舉報給執(zhí)法機(jī)關(guān),。
它們的行動很快得到響應(yīng)。在2023年12月20日斯坦?;ヂ?lián)網(wǎng)觀察站報告發(fā)布前夜,,LAION對美聯(lián)社(The Associated Press)表示,它已經(jīng)臨時移除了其數(shù)據(jù)集,。
LAION是非營利組織大規(guī)模AI開放網(wǎng)絡(luò)(Large-scale Artificial Intelligence Open Network)的縮寫,。該組織在一份聲明中稱,其“對于非法內(nèi)容堅持零容忍的政策,,我們采取了高度謹(jǐn)慎的做法,,把LAION數(shù)據(jù)集下線,會在保證安全之后再重新發(fā)布,?!?/p>
雖然這些圖片在LAION約58億張圖片索引里只是九牛一毛,但斯坦?;ヂ?lián)網(wǎng)觀察站指出,,它可能會影響AI工具生成有害結(jié)果的能力,并讓多次出現(xiàn)的真實受害者再次回想起先前遭到的虐待,。
報告的作者,、斯坦福互聯(lián)網(wǎng)觀察站的首席技術(shù)專家大衛(wèi)·泰爾表示,,這個問題并不容易解決,,原因能夠追溯到許多生成式AI項目因為競爭激烈而“急于上市”,并大范圍推廣,。
泰爾在接受采訪時說:“匯總整個互聯(lián)網(wǎng)上的數(shù)據(jù),,并將數(shù)據(jù)集用于訓(xùn)練模型,這本應(yīng)該僅限于研究目的,,不應(yīng)該是開源的,而且必須接受更嚴(yán)格的監(jiān)管,?!?/p>
LAION的一個主要用戶是位于英國倫敦的初創(chuàng)公司Stability AI,它為LAION數(shù)據(jù)集的開發(fā)提供了幫助,。Stability AI開發(fā)了文本生成圖片的模型Stable Diffusion,。斯坦福的報告稱,,雖然新版Stable Diffusion使用戶更難生成有害內(nèi)容,但2022年發(fā)布的一個舊版本(Stability AI稱其并未發(fā)布該版本)依然被整合到其他應(yīng)用和工具當(dāng)中,,而且仍然是“最受歡迎的生成露骨圖片的模型”,。
加拿大兒童保護(hù)中心的信息技術(shù)總監(jiān)勞埃德·理查森表示:“我們無法回收這款模型。它被許多人安裝在本地的機(jī)器上,?!奔幽么髢和Wo(hù)中心負(fù)責(zé)運營加拿大的在線性剝削舉報熱線。
Stability AI在12月20日表示,,其僅提供經(jīng)過篩查的Stable Diffusion版本,,并且“自從接管了對Stable Diffusion的獨家開發(fā)任務(wù)之后,公司便積極采取了預(yù)防措施,,以減少其被濫用的風(fēng)險,。”
該公司在一份事先準(zhǔn)備的聲明里稱:“這些過濾工具會阻止不安全的內(nèi)容進(jìn)入模型,。這樣做又可以反過來幫助阻止模型生成不安全的內(nèi)容,。”
LAION源自德國研究人員和教師克里斯托弗·舒曼提出的一種理念,。他在2023年早些時候告訴美聯(lián)社,,他之所以希望把一個如此龐大的可視化數(shù)據(jù)庫對外公開,部分原因是為了確保未來AI的發(fā)展不會被幾家強(qiáng)大的公司所控制,。
他說:“如果我們能夠?qū)I發(fā)展民主化,,使整個研究界和全人類都可以從中受益,這將是更安全,、更公平的做法,。”
LAION的大部分?jǐn)?shù)據(jù)來自另外一個數(shù)據(jù)庫Common Crawl,。Common Crawl不斷從開放互聯(lián)網(wǎng)中抓取數(shù)據(jù),,但其執(zhí)行董事里奇·斯克倫塔指出,LAION“有義務(wù)”在使用數(shù)據(jù)之前進(jìn)行掃描和過濾,。
LAION在2023年年底表示,,其開發(fā)了“嚴(yán)格的過濾工具”,能夠在發(fā)布數(shù)據(jù)集之前監(jiān)測和移除非法內(nèi)容,,并且依舊在努力完善這些工具,。斯坦福的報告承認(rèn),LAION的開發(fā)者曾經(jīng)試圖過濾掉“未成年”露骨內(nèi)容,,但如果他們事先征求兒童安全專家的意見,,本可以做得更好。
許多文本生成圖片的工具都使用了LAION數(shù)據(jù)庫進(jìn)行訓(xùn)練,,但尚不確定具體的名單,。DALL-E和ChatGPT的開發(fā)者OpenAI表示,,其并未使用LAION,并且改進(jìn)了其模型,,能夠拒絕涉及未成年人的性內(nèi)容請求,。
谷歌(Google)的文本生成圖像工具Imagen模型基于LAION的數(shù)據(jù)集,但2022年,,由于谷歌對數(shù)據(jù)庫審查后“發(fā)現(xiàn)了大量不良內(nèi)容,,包括色情圖像、種族歧視性語言和有害的社會刻板印象”,,因此公司決定放棄公開發(fā)布該模型,。
追溯性清除相關(guān)數(shù)據(jù)困難重重,因此斯坦?;ヂ?lián)網(wǎng)觀察站呼吁采取更激進(jìn)的措施,。其中一項措施是,任何人如果基于LAION-5B(該模型中包含超過50億個圖片-文本數(shù)據(jù)對,,因此而得名)開發(fā)了訓(xùn)練數(shù)據(jù)集,,就應(yīng)該“刪除數(shù)據(jù)集,或者與中間方合作清理相關(guān)材料”,。另外一項措施是讓舊版Stable Diffusion從互聯(lián)網(wǎng)最陰暗的角落消失,。
泰爾表示,“合法平臺可以停止提供相關(guān)版本下載”,,尤其是在工具被頻繁用于生成不良圖像且沒有阻止此類行為的安全防護(hù)措施的情況下,。
例如,泰爾點名了CivitAI平臺,。該平臺被人們用于制作AI生成的色情內(nèi)容而受到歡迎,,但該平臺缺乏杜絕生成兒童圖片的安全措施。報告中還呼吁AI公司Hugging Face采取更有效的方法,,舉報和刪除虐待材料的鏈接,。Hugging Face為模型提供訓(xùn)練數(shù)據(jù)。
該公司稱,,它長期與監(jiān)管部門和兒童安全團(tuán)體合作,,識別和刪除兒童虐待材料。CivitAI并未回復(fù)在其網(wǎng)頁提交的置評請求,。
斯坦福的報告還質(zhì)疑,,根據(jù)聯(lián)邦《兒童在線隱私保護(hù)法案》(Children’s Online Privacy Protection Act)規(guī)定的保護(hù)措施,未經(jīng)家人同意,,是否應(yīng)該把任何兒童的照片,,即便是最良性的照片,輸入AI系統(tǒng),。
反兒童性虐待組織Thorn的數(shù)據(jù)科學(xué)總監(jiān)瑞貝卡·波特諾夫表示,,她所在機(jī)構(gòu)的研究發(fā)現(xiàn),雖然AI生成的兒童性虐待圖像在虐待者中并不流行,,但這類圖像的流傳范圍正在持續(xù)擴(kuò)大,。
開發(fā)者能夠保證開發(fā)AI模型所使用的數(shù)據(jù)集中不含兒童虐待材料,從而減少這些傷害,。波特諾夫稱,,即使在模型發(fā)布之后,仍舊有機(jī)會徹底減少這類有害的使用,。
科技公司和兒童安全團(tuán)體目前正在為視頻和圖像添加“標(biāo)簽”,,通過這種獨特的數(shù)字標(biāo)志跟蹤和移除兒童虐待內(nèi)容。波特諾夫指出,,這種理念也適用于被濫用的AI模型,。
她說:“AI行業(yè)目前還沒有這樣做。但我認(rèn)為,,他們可以而且應(yīng)該采取這種措施,。”(財富中文網(wǎng))
譯者:劉進(jìn)龍
審校:汪皓
Hidden inside the foundation of popular artificial intelligence image-generators are thousands of images of child sexual abuse, according to a new report that urges companies to take action to address a harmful flaw in the technology they built.
Those same images have made it easier for AI systems to produce realistic and explicit imagery of fake children as well as transform social media photos of fully clothed real teens into nudes, much to the alarm of schools and law enforcement around the world.
Until recently, anti-abuse researchers thought the only way that some unchecked AI tools produced abusive imagery of children was by essentially combining what they’ve learned from two separate buckets of online images — adult pornography and benign photos of kids.
But the Stanford Internet Observatory found more than 3,200 images of suspected child sexual abuse in the giant AI database LAION, an index of online images and captions that’s been used to train leading AI image-makers such as Stable Diffusion. The watchdog group based at Stanford University worked with the Canadian Centre for Child Protection and other anti-abuse charities to identify the illegal material and report the original photo links to law enforcement.
The response was immediate. On the eve of the December 20 release of the Stanford Internet Observatory’s report, LAION told The Associated Press it was temporarily removing its datasets.
LAION, which stands for the nonprofit Large-scale Artificial Intelligence Open Network, said in a statement that it “has a zero tolerance policy for illegal content and in an abundance of caution, we have taken down the LAION datasets to ensure they are safe before republishing them.”
While the images account for just a fraction of LAION’s index of some 5.8 billion images, the Stanford group says it is likely influencing the ability of AI tools to generate harmful outputs and reinforcing the prior abuse of real victims who appear multiple times.
It’s not an easy problem to fix, and traces back to many generative AI projects being “effectively rushed to market” and made widely accessible because the field is so competitive, said Stanford Internet Observatory’s chief technologist David Thiel, who authored the report.
“Taking an entire internet-wide scrape and making that dataset to train models is something that should have been confined to a research operation, if anything, and is not something that should have been open-sourced without a lot more rigorous attention,” Thiel said in an interview.
A prominent LAION user that helped shape the dataset’s development is London-based startup Stability AI, maker of the Stable Diffusion text-to-image models. New versions of Stable Diffusion have made it much harder to create harmful content, but an older version introduced in 2022 — which Stability AI says it didn’t release — is still baked into other applications and tools and remains “the most popular model for generating explicit imagery,” according to the Stanford report.
“We can’t take that back. That model is in the hands of many people on their local machines,” said Lloyd Richardson, director of information technology at the Canadian Centre for Child Protection, which runs Canada’s hotline for reporting online sexual exploitation.
Stability AI on December 20 said it only hosts filtered versions of Stable Diffusion and that “since taking over the exclusive development of Stable Diffusion, Stability AI has taken proactive steps to mitigate the risk of misuse.”
“Those filters remove unsafe content from reaching the models,” the company said in a prepared statement. “By removing that content before it ever reaches the model, we can help to prevent the model from generating unsafe content.”
LAION was the brainchild of a German researcher and teacher, Christoph Schuhmann, who told the AP earlier 2023 that part of the reason to make such a huge visual database publicly accessible was to ensure that the future of AI development isn’t controlled by a handful of powerful companies.
“It will be much safer and much more fair if we can democratize it so that the whole research community and the whole general public can benefit from it,” he said.
Much of LAION’s data comes from another source, Common Crawl, a repository of data constantly trawled from the open internet, but Common Crawl’s executive director, Rich Skrenta, said it was “incumbent on” LAION to scan and filter what it took before making use of it.
LAION said in the end of 2023 it developed “rigorous filters” to detect and remove illegal content before releasing its datasets and is still working to improve those filters. The Stanford report acknowledged LAION’s developers made some attempts to filter out “underage” explicit content but might have done a better job had they consulted earlier with child safety experts.
Many text-to-image generators are derived in some way from the LAION database, though it’s not always clear which ones. OpenAI, maker of DALL-E and ChatGPT, said it doesn’t use LAION and has fine-tuned its models to refuse requests for sexual content involving minors.
Google built its text-to-image Imagen model based on a LAION dataset but decided against making it public in 2022 after an audit of the database “uncovered a wide range of inappropriate content including pornographic imagery, racist slurs, and harmful social stereotypes.”
Trying to clean up the data retroactively is difficult, so the Stanford Internet Observatory is calling for more drastic measures. One is for anyone who’s built training sets off of LAION‐5B — named for the more than 5 billion image-text pairs it contains — to “delete them or work with intermediaries to clean the material.” Another is to effectively make an older version of Stable Diffusion disappear from all but the darkest corners of the internet.
“Legitimate platforms can stop offering versions of it for download,” particularly if they are frequently used to generate abusive images and have no safeguards to block them, Thiel said.
As an example, Thiel called out CivitAI, a platform that’s favored by people making AI-generated pornography but which he said lacks safety measures to weigh it against making images of children. The report also calls on AI company Hugging Face, which distributes the training data for models, to implement better methods to report and remove links to abusive material.
Hugging Face said it is regularly working with regulators and child safety groups to identify and remove abusive material. CivitAI didn’t return requests for comment submitted to its webpage.
The Stanford report also questions whether any photos of children — even the most benign — should be fed into AI systems without their family’s consent due to protections in the federal Children’s Online Privacy Protection Act.
Rebecca Portnoff, the director of data science at the anti-child sexual abuse organization Thorn, said her organization has conducted research that shows the prevalence of AI-generated images among abusers is small, but growing consistently.
Developers can mitigate these harms by making sure the datasets they use to develop AI models are clean of abuse materials. Portnoff said there are also opportunities to mitigate harmful uses down the line after models are already in circulation.
Tech companies and child safety groups currently assign videos and images a “hash” — unique digital signatures — to track and take down child abuse materials. According to Portnoff, the same concept can be applied to AI models that are being misused.
“It’s not currently happening,” she said. “But it’s something that in my opinion can and should be done.”