
每當(dāng)暢想AI具備類(lèi)人能力的未來(lái)時(shí),,空客前首席技術(shù)官保羅·埃雷蒙科首先想到的始終都是利用AI打造真實(shí)的機(jī)器,。他對(duì)《財(cái)富》雜志說(shuō):“我想要一個(gè)能為我們建造星際飛船和戴森球的超級(jí)人工智能體?!贝魃蚴强苹米髌分屑傧氲木扌徒Y(jié)構(gòu),,能夠從恒星獲取能量。
盡管這個(gè)夢(mèng)想仍很遙遠(yuǎn),,但埃雷蒙科正在為此做基礎(chǔ)鋪墊工作,。他與谷歌DeepMind前研究員亞歷克薩·戈?duì)柕掀?,以及空客?chuàng)新中心Acubed前工程負(fù)責(zé)人亞當(dāng)·內(nèi)格爾共同創(chuàng)立了P-1 AI公司,。該公司今日結(jié)束隱身模式,宣布獲得由激進(jìn)創(chuàng)投領(lǐng)投的2300萬(wàn)美元種子輪融資,。
P-1得名于托馬斯·約瑟夫·瑞安1977年的科幻小說(shuō)《P-1的青春》(The Adolescence of P-1),,后者講述了一個(gè)有感情的人工智能體的故事。P-1正在開(kāi)發(fā)名為Archie的AI工程代理,。該理念與Cognition AI的AI編程工具Devin類(lèi)似,,旨在讓Archie融入并成為每個(gè)工程團(tuán)隊(duì)的新成員,處理需求解釋,、初步設(shè)計(jì)概念生成以及法規(guī)合規(guī)性檢查等重復(fù)性耗時(shí)任務(wù),。
埃雷蒙科表示,令他感到驚訝的是,目前還沒(méi)有人從事該領(lǐng)域的研究工作,,不過(guò)他很快明白了個(gè)中原因,。與自動(dòng)駕駛汽車(chē)和機(jī)器人一樣,教導(dǎo)AI建造機(jī)器需要海量的訓(xùn)練數(shù)據(jù),。他解釋說(shuō),,關(guān)鍵在于通過(guò)建立電機(jī)、管道,、軸等真實(shí)部件的虛擬模型,,來(lái)模擬真實(shí)的工程系統(tǒng)。
戈?duì)柕掀嬷赋?,這一點(diǎn)跟谷歌DeepMind利用圍棋訓(xùn)練AlphaGo差不多,。AlphaGo是一個(gè)人工智能體,曾在圍棋這個(gè)超級(jí)復(fù)雜的策略棋盤(pán)游戲中戰(zhàn)勝了人類(lèi),。他對(duì)《財(cái)富》雜志說(shuō):“AlphaGo最初通過(guò)模仿人類(lèi)棋手?jǐn)?shù)據(jù)進(jìn)行訓(xùn)練,。”如今,,他將開(kāi)始訓(xùn)練和精校大語(yǔ)言模型和其他AI系統(tǒng),,使其能在數(shù)據(jù)中心冷卻或暖通系統(tǒng)等物理現(xiàn)象較為豐富的場(chǎng)景中理解和修改復(fù)雜工程設(shè)計(jì)。
他解釋說(shuō),,為超越ChatGPT這類(lèi)大型語(yǔ)言模型所擁有的“高級(jí)自動(dòng)補(bǔ)全”功能,,模型必須適用于執(zhí)行工程任務(wù)。因此,,AI需真正理解并遵從指令,。如果將基于物理模擬合成數(shù)據(jù)訓(xùn)練的AI模型與能理解執(zhí)行該數(shù)據(jù)的AI模型相結(jié)合,那么就可以真正實(shí)現(xiàn)工程協(xié)助的自動(dòng)化,。
埃雷蒙科表示,,P-1的投資者不僅關(guān)注公司務(wù)實(shí)的短期計(jì)劃,同時(shí)對(duì)公司的遠(yuǎn)景尤為興奮,。他解釋說(shuō):“工程和AI領(lǐng)域的很多從業(yè)者從小便開(kāi)始接觸科幻作品,。這些科幻作品都曾提及,未來(lái)將出現(xiàn)能夠建造星際飛船的超級(jí)人工智能體,?!?/p>
Autodesk、西門(mén)子和IBM等巨頭正在探索AI的工程應(yīng)用,,但它們既沒(méi)有創(chuàng)造新型的通用工程AI助手,,也沒(méi)有去探究上述用AI制造機(jī)器的宏大愿景。
不過(guò),,埃雷蒙科和戈?duì)柕掀鎴?jiān)稱(chēng),,他們所走的這條路徑非?,F(xiàn)實(shí),而且將專(zhuān)注地走下去,,它并不是一個(gè)沒(méi)有期限的純研究類(lèi)項(xiàng)目,。埃雷蒙科說(shuō):“它不會(huì)成為那種長(zhǎng)達(dá)十年、難以實(shí)現(xiàn)的項(xiàng)目,,而是一個(gè)非常務(wù)實(shí)的執(zhí)行和上市路徑,。”(財(cái)富中文網(wǎng))
譯者:馮豐
審校:夏林
每當(dāng)暢想AI具備類(lèi)人能力的未來(lái)時(shí),,空客前首席技術(shù)官保羅·埃雷蒙科首先想到的始終都是利用AI打造真實(shí)的機(jī)器,。他對(duì)《財(cái)富》雜志說(shuō):“我想要一個(gè)能為我們建造星際飛船和戴森球的超級(jí)人工智能體?!贝魃蚴强苹米髌分屑傧氲木扌徒Y(jié)構(gòu),,能夠從恒星獲取能量。
盡管這個(gè)夢(mèng)想仍很遙遠(yuǎn),,但埃雷蒙科正在為此做基礎(chǔ)鋪墊工作,。他與谷歌DeepMind前研究員亞歷克薩·戈?duì)柕掀妫约翱湛蛣?chuàng)新中心Acubed前工程負(fù)責(zé)人亞當(dāng)·內(nèi)格爾共同創(chuàng)立了P-1 AI公司,。該公司今日結(jié)束隱身模式,,宣布獲得由激進(jìn)創(chuàng)投領(lǐng)投的2300萬(wàn)美元種子輪融資。
P-1得名于托馬斯·約瑟夫·瑞安1977年的科幻小說(shuō)《P-1的青春》(The Adolescence of P-1),,后者講述了一個(gè)有感情的人工智能體的故事,。P-1正在開(kāi)發(fā)名為Archie的AI工程代理。該理念與Cognition AI的AI編程工具Devin類(lèi)似,,旨在讓Archie融入并成為每個(gè)工程團(tuán)隊(duì)的新成員,,處理需求解釋、初步設(shè)計(jì)概念生成以及法規(guī)合規(guī)性檢查等重復(fù)性耗時(shí)任務(wù),。
埃雷蒙科表示,,令他感到驚訝的是,目前還沒(méi)有人從事該領(lǐng)域的研究工作,,不過(guò)他很快明白了個(gè)中原因,。與自動(dòng)駕駛汽車(chē)和機(jī)器人一樣,教導(dǎo)AI建造機(jī)器需要海量的訓(xùn)練數(shù)據(jù),。他解釋說(shuō),,關(guān)鍵在于通過(guò)建立電機(jī),、管道,、軸等真實(shí)部件的虛擬模型,來(lái)模擬真實(shí)的工程系統(tǒng),。
戈?duì)柕掀嬷赋?,這一點(diǎn)跟谷歌DeepMind利用圍棋訓(xùn)練AlphaGo差不多,。AlphaGo是一個(gè)人工智能體,曾在圍棋這個(gè)超級(jí)復(fù)雜的策略棋盤(pán)游戲中戰(zhàn)勝了人類(lèi),。他對(duì)《財(cái)富》雜志說(shuō):“AlphaGo最初通過(guò)模仿人類(lèi)棋手?jǐn)?shù)據(jù)進(jìn)行訓(xùn)練,。”如今,,他將開(kāi)始訓(xùn)練和精校大語(yǔ)言模型和其他AI系統(tǒng),,使其能在數(shù)據(jù)中心冷卻或暖通系統(tǒng)等物理現(xiàn)象較為豐富的場(chǎng)景中理解和修改復(fù)雜工程設(shè)計(jì)。
他解釋說(shuō),,為超越ChatGPT這類(lèi)大型語(yǔ)言模型所擁有的“高級(jí)自動(dòng)補(bǔ)全”功能,,模型必須適用于執(zhí)行工程任務(wù)。因此,,AI需真正理解并遵從指令,。如果將基于物理模擬合成數(shù)據(jù)訓(xùn)練的AI模型與能理解執(zhí)行該數(shù)據(jù)的AI模型相結(jié)合,那么就可以真正實(shí)現(xiàn)工程協(xié)助的自動(dòng)化,。
埃雷蒙科表示,,P-1的投資者不僅關(guān)注公司務(wù)實(shí)的短期計(jì)劃,同時(shí)對(duì)公司的遠(yuǎn)景尤為興奮,。他解釋說(shuō):“工程和AI領(lǐng)域的很多從業(yè)者從小便開(kāi)始接觸科幻作品,。這些科幻作品都曾提及,未來(lái)將出現(xiàn)能夠建造星際飛船的超級(jí)人工智能體,?!?/p>
Autodesk、西門(mén)子和IBM等巨頭正在探索AI的工程應(yīng)用,,但它們既沒(méi)有創(chuàng)造新型的通用工程AI助手,,也沒(méi)有去探究上述用AI制造機(jī)器的宏大愿景。
不過(guò),,埃雷蒙科和戈?duì)柕掀鎴?jiān)稱(chēng),,他們所走的這條路徑非常現(xiàn)實(shí),,而且將專(zhuān)注地走下去,,它并不是一個(gè)沒(méi)有期限的純研究類(lèi)項(xiàng)目。埃雷蒙科說(shuō):“它不會(huì)成為那種長(zhǎng)達(dá)十年,、難以實(shí)現(xiàn)的項(xiàng)目,,而是一個(gè)非常務(wù)實(shí)的執(zhí)行和上市路徑?!保ㄘ?cái)富中文網(wǎng))
譯者:馮豐
審校:夏林
When dreaming of the day artificial intelligence achieves humanlike ability, former Airbus CTO Paul Eremenko says he’s always done so in the context of building real-world machines. “I want an AI superintelligence that can build us starships and Dyson spheres,” he told Fortune—the latter being a hypothetical sci-fi megastructure that would harness energy from a star.
While his dream is still a long way off, Eremenko is laying the groundwork. He has joined forces with former Google DeepMind researcher Aleksa Gordi? and Adam Nagel, an engineering leader previously at Acubed, Airbus’s innovation center. Together, they have founded P-1 AI, which emerged from stealth today with a $23 million seed round led by Radical Ventures.
P-1, named after The Adolescence of P-1, a 1977 science fiction novel by Thomas Joseph Ryan about a sentient AI, is developing an AI-powered engineering agent called Archie. Similar to other AI agents like the AI-coding Devin from Cognition AI, the idea is to embed Archie as a junior member of every engineering team—to handle repetitive but time-sucking tasks like interpreting requirements, generating early design concepts, and checking compliance with regulations.
Eremenko said he was surprised that no one was already working on this goal, but he quickly figured out why. Just like with self-driving cars and robots, teaching AI to build machines requires a tremendous amount of training data. The key, he explained, is simulating realistic engineering systems by building virtual models of real-world components, like motors, pipes, and shafts.
According to Gordi?, it’s similar to how Google DeepMind used games to help train AlphaGo, the AI that beat human champions at Go, a famously complex strategy board game. "AlphaGo was trained initially to mimic data from actual human players," he told Fortune. Now, he will be training and fine-tuning large language models (LLMs) and other AI systems to understand and modify complex engineering designs in physics-rich systems like data center cooling or HVAC systems.
To go beyond the "glorified auto-complete" capabilities of LLMs like ChatGPT, he explained, the models must be useful for engineering tasks. The AI, therefore, must actually understand commands and follow instructions. The powerful combination of AI models that are trained on synthetic data built on physics simulations and that can then understand and act on that data makes truly automated engineering assistance a reality.
P-1’s investors, said Eremenko, are interested in the startup’s more grounded short-term plans—but they are particularly excited about the future. "A lot of us in the engineering and AI world, we grew up on sci-fi, and the sci-fi promised us a superintelligence that’s going to build starships," he explained.
Large incumbents like Autodesk, Siemens, and IBM are working toward elements of using AI for engineering, but they are not creating a new class of generalist engineering AI assistants, nor are they going after the same grand vision of AI-built machines.
Yet Eremenko and Gordi? insist theirs is a very realistic and focused path, and it’s not purely a research project with an indefinite time frame. "We’re not going to be a 10-year moonshot," Eremenko said. "This is a very pragmatic rollout and path to market."